

CS 280: Homework 5

Date of Handout: 27 Oct 99

Due Date: 1 Nov 99 in class

Due date is the MONDAY before the midterm.

Problem 1: For each language L below give a context free grammar which generates L . When a string s is specified, give a parse tree for s and a leftmost derivation of s corresponding to that parse tree. In each case, the alphabet can be inferred from the context.

- (a) (6 points) $L = \{s \mid s = s^R\}$, i.e., the set of all strings which are identical to their reversals. Such strings are called palindromes. Take $s = aabbaa$.
- (b) (6 points) $L = \{a^i b^j c^k \mid i = j \text{ or } j = k, \text{ and } i, j, k \geq 0\}$. Take $s = a^2 b^2 c^2$.
- (c) (6 points) L = strings of as and bs which are NOT palindromes.
- (d) (6 points) L = strings of opening parentheses (s and closing parentheses $)$ s whose (s can be correctly matched with $)$ s. Take $s = ((())()$.
- (e) (6 points) $L = \{a^{2n} b^k c^{3n} \mid n \geq 0, k \geq 0\}$.

Problem 2: (10 points) Write a CFG which generates the set of all strings of as and bs which have exactly twice as many as as bs . (Hint: Take the approach explained in class. Assign a weight of $1/2$ to every a and a weight of -1 to every b . Derive a recursion between strings of total weight $0, \pm \frac{1}{2}, \pm 1$)