
Problem 1: Dot Product

The dot product of two vectors, u and v, is
∑
i ui ∗ vi.

Examples

Write two examples of the operation of dot-product.
Solution (dot-product (make-vector 5 1) (make-vector 5 1)) ==¿ 5
(dot-product (make-vector 5 1) (make-vector 5 2)) ==¿ 10

Implementation

Write a function dot-product that computes the dot-product of two vectors.

(define (dot-product u v)
;; dot-product: (vectorof number) (vectorof number) -> number

Solution

;; dot-product : vector-of-numbers vector-of-numbers -> vector-of-numbers
(define (dot-product v1 v2)
(dot-product-helper (vector-length v1) v1 v2))

;; dot-product-helper : number vector-of-numbers vector-of-numbers ->
+vector-of-numbers
(define (dot-product-helper n v1 v2)
(cond
[(zero? n) 0]
[else (+ (* (vector-ref v1 (- n 1))

(vector-ref v2 (- n 1)))
(dot-product-helper (- n 1) v1 v2))]))

Test

Demonstrate the operation of your function on the examples you defined above.

Problem2: Changeable Phonebook

Assume a variant of the phonebook in Homework 6, where instead of a list of
structures, the phonebook is represented as a vector of structures as below.

A phone-book is a vector of length 100 where entries are either:

• #f, or

• (make-pb name number)

(define-struct pb (name number)), where name is a symbol and num-
ber is a number)

1



new-phonebook

Based on the definition above, create a new phonebook where all the entries are
#f.

Solution

(define-struct pb (name number))
;; name : symbol
;; number : number

;; phonebook : vector of pb or #f
(define phonebook (make-vector 100 #f))
(define entries 0)

add-phonebook

Create a new function add-phonebook that inserts new phonebook entry -
name and number - into the phonebook created above. If an entry already
exists for a given name, do nothing.

(define (add-phonebook name number)
;; add-phonebook: symbol number -> (void)

Solution

;; add-phonebook : symbol number -> void
;; adds the name and number to the phonebook
;; unless the name is already there.
(define (add-phonebook name number)
(cond
[(is-in-phonebook? name entries) (void)]
[(= (vector-length phonebook) entries) (void)]
[else (begin (vector-set! phonebook entries (make-pb name number))

(set! entries (+ entries 1)))]))

(define (is-in-phonebook? name num)
(cond
[(zero? num) #f]
[else (or (eq? name (pb-name (vector-ref phonebook (- num 1))))

(is-in-phonebook? name (- num 1)))]))

update-phonebook

Implement a new function update-phonebook that takes a name and number
and updates the associated phonebook entry if there is one, and returns #f,
otherwise.

2



(define (update-phonebook name number)
;; add-phonebook: symbol number -> (void) or \#f

Solution

;; update-phonebook : symbol number -> void
(define (update-phonebook name number)
(update-phonebook-helper name number entries))

;; update-phonebook-helper : symbol number number -> void
(define (update-phonebook-helper name number n)
(cond
[(zero? n) (void)]
[else (if (eq? (pb-name (vector-ref phonebook (- n 1))) name)

(vector-set! phonebook (- n 1) (make-pb name number))
(update-phonebook-helper name number (- n 1)))]))

3


