
Problem 1: Queues

Consider the queue implementation discussed in class in which a queue is
represented by three variables, head, tail, queue, all of which are defined
at the top-level. head and tail are integers, and queue is (vectorof number).
Assume the basic, non-circular vector implementation of queues.

Let’s design a function print-queue that non-destructively prints all the
elements in the queue in order of their position in the queue.

Examples

Create an example queue to print using the procedures enqueue and de-
queue. There should be at least 4 entries in the queue. You must include
calls to both enqueue and dequeue.

Give the sequence of enqueue and dequeue calls.

Function

Create a function called print-queue that builds a list of the numbers in
the queue.

(define (print-queue)

;; print-queue: -> (listof numbers)

Test

Show the output of your function on the example queue you constructed in
part one.

Alternate implementations

We also considered a circular implementation of queues using vectors in class.
Would the function print-queue change under the circular vector im-

plementation of queues? If so, please modify your function to handle the
circular queue implementation. If not, explain why.

1

Abstraction and Concrete Implementation

Explain what would happen if you used dequeue to implement print-
queue.

Problem 2: Streams: Powers

Stream Creation

Recall the data definition of streams:
A stream is:

• (cons number (delay stream))

Create a stream powers-of-2 composed of the powers of two, i.e. 21, 22,, 2i, ...

There are many alternative ways to define a stream of powers-of-2. Feel
free to create powers-of-2 in whatever way makes sense to you.

Here’s a function to help you test your code.

;; take : number stream -> list-of-numbers

;; extracts the first n elements from the stream

(define (take n s)

(cond

[(zero? n) ’()]

[else (cons (car s) (take (- n 1) (force (cdr s))))]))

Hint: One possibility is to create a function powers-of-2-from which
takes a starting number n and creates a stream consisting of n∗20, n∗21, n∗
22,, n ∗ 2i, ...

(define (powers-of-2-from n)

;; powers-of-2-from: number -> stream-of-numbers

Powers: Generalization

Consider a function power-stream that will construct a stream of all the
powers of any x, starting with the first power; that is, a stream given by the
sequence x, x2, x3, x4, ... for ANY value of x.

2

(define (power-stream x)

;; power-stream: number -> stream-of-numbers

Examples

Give three examples of calls to power-stream and the first few elements of
the output stream.

Template

Write the template for functions on streams.

Function

Create the function power-stream as described above.

3

