
Lesson 4: Typed Arithmetic and Lambda
Calculus

1

Lesson 4
Typed Arithmetic

Typed Lambda Calculus

1/21/02
Chapters 8, 9, 10

Lesson 4: Typed Arith & Lambda 2

Outline

• Types for Arithmetic
– types
– the typing relation
– safety = progress + preservation

• The simply typed lambda calculus
– Function types
– the typing relation
– Curry-Howard correspondence
– Erasure: Curry-style vs Church-style

• Implementation

Lesson 4: Typed Arithmetic and Lambda
Calculus

2

Lesson 4: Typed Arith & Lambda 3

Terms for arithmetic

t :: = true
 false
 if t then t else t
 0
 succ t
 pred t
 iszero t

v :: = true
 false
 nv

nv ::= 0
 succ nv

Terms Values

Lesson 4: Typed Arith & Lambda 4

Boolean and Nat terms

Some terms represent booleans, some represent
natural numbers.

t :: = true
 false
 if t then t else t
 0
 succ t
 pred t
 iszero t

if t then t else t
if t then t else t

Lesson 4: Typed Arithmetic and Lambda
Calculus

3

Lesson 4: Typed Arith & Lambda 5

Nonsense terms

Some terms don’t make sense. They represent
neither booleans nor natural numbers.

succ true
iszero false
if succ(0) then true else false

These terms are stuck -- no evaluation rules apply,
but they are not values.
But what about the following?

if iszero(0) then true else 0

Lesson 4: Typed Arith & Lambda 6

Space of terms

0

false

true
succ(0)

iszero(pred(0))

Terms

if true then 0 else succ(0)

succ(succ(0))

Lesson 4: Typed Arithmetic and Lambda
Calculus

4

Lesson 4: Typed Arith & Lambda 7

Bool and Nat values

iszero(pred(0))

Terms

if true then 0 else succ(0)

false

true 0

succ(0)

succ(succ(0))

Boolean values

Nat values

Lesson 4: Typed Arith & Lambda 8

Bool and Nat types

Terms

false
true

Evals to Bool value

0

Evals to Nat value
Bool type

Nat type

Lesson 4: Typed Arithmetic and Lambda
Calculus

5

Lesson 4: Typed Arith & Lambda 9

Evaluation preserves type

Terms

Bool

Nat

Lesson 4: Typed Arith & Lambda 10

A Type System

1. type expressions: T ::= . . .

2. typing relation : t : T

3. typing rules giving an inductive definition of t: T

Lesson 4: Typed Arithmetic and Lambda
Calculus

6

Lesson 4: Typed Arith & Lambda 11

Typing rules for Arithmetic: BN (typed)

T ::= Bool | Nat (type expressions)

true : Bool (T-True)

false : Bool (T-False)

0 : Nat (T-Zero)

t1: Bool t3: T

if t1 then t2 else t3 : T
(T-If)

t2: T

t1: Nat

succ t1 : Nat
(T-Succ)

t1: Nat

pred t1 : Nat
(T-Pred)

t1: Nat

iszero t1 : Bool
(T-IsZero)

Lesson 4: Typed Arith & Lambda 12

Typing relation

Defn: The typing relation t: T for arithmetic expressions
is the smallest binary relation between terms and types
satisfying the given rules.

A term t is typable (or well typed) if there is some T such
that t : T.

Lesson 4: Typed Arithmetic and Lambda
Calculus

7

Lesson 4: Typed Arith & Lambda 13

Inversion Lemma

Lemma (8.2.2). [Inversion of the typing relation]
 1. If true : R then R = Bool
 2. If false : R then R = Bool
 3. If if t1 then t2 else t3 : R then t1 : Bool and t2, t3 : R
 4. If 0: R then R = Nat
 5. If succ t1 : R then R = Nat and t1 : Nat
 6. If pred t1 : R then R = Nat and t1 : Nat
 7. If iszero t1 : R then R = Bool and t1 : Nat

Lesson 4: Typed Arith & Lambda 14

Typing Derivations

A type derivation is a tree of instances of typing rules
with the desired typing as the root.

iszero(0): Bool pred(0): Nat

if iszero(0) then 0 else pred 0 : Nat
(T-If)

0: Nat

0: Nat 0: Nat(T-Zero) (T-Zero)
(T-Pred)(T-IsZero)

The shape of the derivation tree exactly matches the
shape of the term being typed.

Lesson 4: Typed Arithmetic and Lambda
Calculus

8

Lesson 4: Typed Arith & Lambda 15

Uniqueness of types

Theorem (8.2.4). Each term t has at most one type. That
is, if t is typable, then its type is unique, and there is a
unique derivation of its type.

Lesson 4: Typed Arith & Lambda 16

Safety (or Soundness)

Safety = Progress + Preservation

Progress: A well-typed term is not stuck -- either it is a
value, or it can take a step according to the evaluation rules.

Preservation: If a well-typed term makes a step of evaluation,
the resulting term is also well-typed.

Preservation is also known as “subject reduction”

Lesson 4: Typed Arithmetic and Lambda
Calculus

9

Lesson 4: Typed Arith & Lambda 17

Cannonical forms

Defn: a cannonical form is a well-typed value term.

Lemma (8.3.1).
 1. If v is a value of type Bool, then v is true or v is false.
 2. If v is a value of type Nat, then v is a numeric value,
 i.e. a term in nv, where
 nv ::= 0 | succ nv.

Lesson 4: Typed Arith & Lambda 18

Progress and Preservation for Arithmetic

Theorem (8.3.2) [Progress]
 If t is a well-typed term (that is, t: T for some type T),
 then either t is a value or else t Æ t’ for some t’.

Theorem (8.3.3) [Preservation]
 If t: T and t Æ t’ then t’ : T.

Proofs are by induction on the derivation of t: T.

Lesson 4: Typed Arithmetic and Lambda
Calculus

10

Lesson 4: Typed Arith & Lambda 19

Simply typed lambda calculus

To type terms of the lambda calculus, we need types for
functions (lambda terms):

 T1 -> T2

A function type T1 -> T2 specifies the argument type T1 and
the result type T2 of the function.

Lesson 4: Typed Arith & Lambda 20

Simply typed lambda calculus

The abstract syntax of type terms is

 T ::= base types
 T -> T

We need base types (e.g Bool) because otherwise we could
build no type terms.

We also need terms of these base types,so we have an “applied”
lambda calculus. In this case, we will take Bool as the sole
base type and add corresponding Boolean terms.

Lesson 4: Typed Arithmetic and Lambda
Calculus

11

Lesson 4: Typed Arith & Lambda 21

Abstract syntax and values

Terms

t :: = true
 false
 if t then t else t
 x
 lx: T . t
 t t

v :: = true
 false
 lx: T . t

Values

Note that terms contain types! Lambda expressions
are explicitly typed.

Lesson 4: Typed Arith & Lambda 22

Typing rule for lambda terms

The body of a lambda term (usually) contains free variable
occurrences. We need to supply a context (G) that gives
types for the free variables.

Defn. A typing context G is a list of free variables with their
types. A variable can appear only once in a context.

 G ::= ∅ | G, x: T

G, x: T1 |- t2 : T2

G |- lx: T1. t2 : T1 -> T2
(T-Abs)

Lesson 4: Typed Arithmetic and Lambda
Calculus

12

Lesson 4: Typed Arith & Lambda 23

Typing rule for applications

The type of the argument term must agree with the
argument type of the function term.

G |- t2 : T11

G |- t1 t2 : T12
(T-App)

G |- t1 : T11 -> T12

Lesson 4: Typed Arith & Lambda 24

Typing rule for variables

The type of a variable is taken from the supplied context.

G |- x : T
(T-Var)

x : T Œ G

Lesson 4: Typed Arithmetic and Lambda
Calculus

13

Lesson 4: Typed Arith & Lambda 25

Inversion of typing relation

Lemma (9.3.1). [Inversion of the typing relation]
 1. If G |- x : R then x: R Œ G
 2. If G |- lx: T1. t2 : R then R = T1 -> R2 for some R2 with
 G, x: T1 |- t2 : R2.
 3. If G |- t1 t2 : R, then there is a T11 such that G |- t1: T11 -> R
 and G |- t2 : T11.
 4. If G |- true : R then R = Bool
 5. If G |- false : R then R = Bool
 6. If G |- if t1 then t2 else t3 : R then G |- t1 : Bool
 and G |- t2, t3 : R

Lesson 4: Typed Arith & Lambda 26

Uniqueness of types

Theorem (9.3.3): In a given typing context G containing all the
free variables of term t, there is at most one type T such that
G |- t: T.

Lesson 4: Typed Arithmetic and Lambda
Calculus

14

Lesson 4: Typed Arith & Lambda 27

Canonical Forms (lÆ)

Lemma (9.3.4):
 1. If v is a value of type Bool, then v is either true or false.
 2. If v is a value of type T1->T2, then v = lx: T1.t.

Lesson 4: Typed Arith & Lambda 28

Progress (lÆ)

Theorem (9.3.5): Suppose t is a closed, well-typed term (so
|- t: T for some T). Then either t is a value, or t Æ t’ for
some t’.

Proof: by induction on the derivation of |- t: T.

Note: if t is not closed, e.g. f true, then it may be in normal
form yet not be a value.

Lesson 4: Typed Arithmetic and Lambda
Calculus

15

Lesson 4: Typed Arith & Lambda 29

Permutation and Weakening

Lemma (9.3.6)[Permutation]: If G |- t: T and D is a permutation
of G, then D |- t: T.

Lemma (9.3.7)[Weakening]: If G |- t: T and xœdom(G), then
for any type S, G, x: S |- t: T, with a derivation of the same
depth.

Proof: by induction on the derivation of |- t: T.

Lesson 4: Typed Arith & Lambda 30

Substitution Lemma

Lemma (9.3.8) [Preservation of types under substitutions]:
If G, x: S |- t : T and G |- s: S, then G |- [x ! s]t: T.

Proof: induction of the derivation of G, x: S |- t : T.
Replace leaf nodes for occurences of x with copies of
the derivation of G |- s: S.

Lesson 4: Typed Arithmetic and Lambda
Calculus

16

Lesson 4: Typed Arith & Lambda 31

Substitution Lemma

Lemma (9.3.8) [Preservation of types under substitutions]:
If G, x: S |- t : T and G |- s: S, then G |- [x ! s]t: T.

Proof: induction of the derivation of G, x: S |- t : T.
Replace leaf nodes for occurences of x with copies of
the derivation of G |- s: S.

Lesson 4: Typed Arith & Lambda 32

Preservation (lÆ)

Theorem (9.3.9) [Preservation]:
If G |- t : T and t Æ t’, then G |- t’ : T.

Proof: induction of the derivation of G |- t : T, similar
to the proof for typed arithmetic, but requiring the
Substitution Lemma for the beta redex case.

Homework: write a detailed proof of Thm 9.3.9.

Lesson 4: Typed Arithmetic and Lambda
Calculus

17

Lesson 4: Typed Arith & Lambda 33

Introduction and Elimination rules

l Introduction

G |- t2 : T11

G |- t1 t2 : T12
(T-App)

G |- t1 : T11 -> T12

G, x: T1 |- t2 : T2

G |- lx: T1. t2 : T1 -> T2
(T-Abs)

l Elimination

Typing rules often come in intro-elim pairs like this.
Sometimes there are multiple intro or elim rules for a construct.

Lesson 4: Typed Arith & Lambda 34

Erasure

Defn: The erasure of a simply typed term is defined by:

 erase(x) = x
 erase(lx: T. t) = lx. erase(t)
 erase(t1 t2) = (erase(t1))(erase(t2))

erase maps a simply typed term in lÆ to the corresponding
untyped term in l.

 erase(lx: Bool. ly: Bool -> Bool. y x) = lx. ly. y x

Lesson 4: Typed Arithmetic and Lambda
Calculus

18

Lesson 4: Typed Arith & Lambda 35

Erasure commutes with evaluation

t

m’t’

m
erase

erase

evallÆ evall

Theorem (9.5.2)
 1. if t Æ t’ in lÆ then erase(t) Æ erase(t’) in l.
 2. if erase(t) Æ m in l then there exists t’ such
 that t Æ t’ in lÆ and erase(t’) = m.

Lesson 4: Typed Arith & Lambda 36

Curry style and Church style

Curry:
 define evaluation for untyped terms, then define
 the well-typed subset of terms and show that they don’t
 exhibit bad “run-time” behaviors.
 Erase and then evaluate.

Church:
 define the set of well-typed terms and give evaluation
 rules only for such well-typed terms.

Lesson 4: Typed Arithmetic and Lambda
Calculus

19

Lesson 4: Typed Arith & Lambda 37

Homework

Modify the simplebool program to add arithmetic terms
and a second primitive type Nat.

1. Add Nat, 0, succ, pred, iszero tokens to lexer and parser.
2. Extend the definition of terms in the parser with
 arithmetic forms (see tyarith)
3. Add type and term constructors to abstract syntax in
 syntax.sml, and modify print functions accordingly.
3. Modify the eval and typeof functions in core.sml to
 handle arithmetic expressions.

Lesson 4: Typed Arith & Lambda 38

Optional homework

Can you define the arithmetic plus operation in lÆ (BN)?

Lesson 4: Typed Arithmetic and Lambda
Calculus

20

Lesson 4: Typed Arith & Lambda 39

Sample

some text

Lesson 4: Typed Arith & Lambda 40

Rules

prem1 prem2

concl
(Label)

axiom (Label)

prem1

concl
(Label)

Lesson 4: Typed Arithmetic and Lambda
Calculus

21

Lesson 4: Typed Arith & Lambda 41

Symbols

l a b m t r s G
Æ ! ‘ Ÿ ˙
∅ » « ⊇ Õ Ã À Œ œ
≡
l a b m t r s G D
Æ ! ‘ Ÿ ˙
∅ » « ⊇ Õ Ã À Œ œ
≡

Lesson 4: Typed Arith & Lambda 42

Space of terms

Bool

Nat
0

false

true

succ

iszero

Terms

