
CMSC 23700 Introduction to Computer Graphics Handout 2
Fall 2003 September 30

Lab tips

This handout provides an introduction to some of the tools you will use to complete the pro-
gramming projects.

Getting Started

You will need an account on the CS machines (this is different from your harper account). If you
do not already have one, you can request one at

www.cs.uchicago.edu/info/services/account_request

You may work on your projects using either Linux or MacOS X. Both Linux and MacOS X
machines with good-quality graphics cards are available for use in the CS Instructional Computing
Laboratory (MacLab) located on the A-Level of Regenstein Library. There are some advantages to
the MacOS X environment as it provides OpenGL performance monitoring tools, but feel free to
work in the environment that you are most comfortable with.

You will be expected to use CVS for your projects. We will set up CVS repositories for you.
Projects will be collected for grading directly out of your CVS repository.

Using OpenGL and GLUT functions in your C programs

In order to use OpenGL and GLUT functions in your program you will need to include the ap-
propriate header files. The fileglut.h header file includes the OpenGL header files (gl.h and
glu.h), so it is the only one you will need to include. Unfortunately, Linux and MacOS X differ
in where they put theglut.h file. The following bit of preprocessor code will allow your program
to compile on both platforms:

#if defined(__APPLE__) && defined(__MACH__)
include <GLUT/glut.h>
#else
include <GL/glut.h>
#endif

Compiling under Linux

On Linux systems, you should usegccversion 3.0, which accessed under the namegcc-3.0 . To
compile and link an OpenGL program under Linux, you must use the following linking options:

-lglut -lGL -lGLU -lm -L/opt/xfree86/default/lib

Compiling under MacOS X

MacOS X also usesgccas its default C compiler. Apple uses a different set of linking flags from
Linux. To link an OpenGL program, you need the following linker flags:

-framework GLUT -framework OpenGL -framework Foundation

The MacLab machines also have two IDEs installed: MetrowerksCodeWarrior and ApplesPro-
jectBuilder (the latter usesgccas its compiler). You may use these systems to develop and debug
your projects, but please include a makefile in you submissions.

Makefiles

For each of your projects, you should include a makefile in your submission. We will provide a
skeleton makefile for you, but you are responsible for maintaining it. For a simple project, such as
Project 0, that contains only a single source file, the following makefile will suffice:

SHELL = /bin/sh

ifeq ($(shell uname -s),Darwin)
CC = cc -std=gnu99
LDFLAGS = -framework GLUT -framework OpenGL -framework Foundation

else
CC = /usr/bin/gcc-3.0 -std=gnu99
LDFLAGS = -lglut -lGL -lGLU -lm -L/opt/xfree86/xfree86-4.3.0/lib

endif

project0: main.c
$(CC) $(CFLAGS) -o project0 main.c $(LDFLAGS)

clean:
rm -rf project0

This makefile works on both Linux and MacOS X by setting the LDFLAGS make variable based on
the host OS. If you have not usedmakebefore, you should take a look at the documentation. Infor-
mation about make is available atwww.gnu.org/software/make and online documentation
can be found atwww.gnu.org/manual/make/html_chapter/make.html .

Using CVS

You are expected to keep the source code of your projects in a CVS repository that we will setup
for you. If you CS account user ID isjoebob , then theroot of you repository will be

cvs.cs.uchicago.edu:/stage/cmsc237/students/joebob

For each project, we will create a CVSmodule. In the rest of this section, we give a quick introduc-
tion to using CVS.

To use CVS, you will first need to set the following environment variables (usingcshsyntax):

2

setenv CVS_SERVER /usr/local/bin/cvs
setenv CVS_RSH ssh
setenv CVSROOT cvs.cs.uchicago.edu:/stage/cmsc237/students/joebob

The last of these assumes that you login ID is “joebob .” Instead of setting theCVSROOTvariable,
it is also possible to use the “-d ” command line option when issuing CVS commands (see below).

You are now ready to checkout your project. A CVS repository with a module called “project-0 ”
will already have been created for you. Tocheckouta copy of this module, run the following com-
mand:

cvs co project-0

or, if you didn’t setCVSROOT,

cvs -d cvs.cs.uchicago.edu:/stage/cmsc237/students/joebob co project-0

This command will create a directory calledproject-0 . In this directory is another directory
called CVS, which holds various metadata about this copy of the repository —you should not
change anything in this directory. You will also find a file namedMakefile , which we have
provided for you. All the files related to your project should live in theproject-0 directory.

Now suppose you create a file calledmain.c in yourproject-0 directory. In order for CVS
to keep track of it, it needs to be added to the repository. You do this by the following command:

cvs add main.c

You should see a message like:

cvs add: scheduling file ‘main.c’ for addition
cvs add: use ’cvs commit’ to add these files permanently

This command records the fact thatmain.c has been added to the repository, but file will only be
added when you commit your changes. To do so, type the following command:

cvs commit

to add the files permanently to the repository. You will be prompted to enter a log message in an
editor. To specify a particular editor for entering log messages, set theCVSEDITORenvironment
variable. You can also avoid editors altogether by typing your log message on the command line
with the-m flag:

cvs commit -m "added files"

After you have entered your message, you will see a message like the following:

/tmp/cvsCBrFgq: 9 lines, 337 characters.
Checking in main.c;
/stage/cmsc237/students/joebob/project-0/main.c,v <-- main.c
initial revision: 1.1
done

Changes you make to your files are recorded in the repository every time you do acvs commit .
Before you make changes to your files, you can ensure that you have a current version, by running
cvs update . This fact is not of tremendous significance for individual projects, but matters when
more that one person can modify the same files.

Not all the files in your project directory need to be in the repository. For example you should
not put your executble files in the repository — these can always be recreated (hopefully!) by
compiling the source.

3

The “cvs diff ” command is for comparing differences between versions. If no files (or
options) are specified, all working files are compared to their last committed versions, otherwise
only the specified files are compared. There are also flags to compare other versions, see the man
pages or the online manual for details.

Useful resources

There are links to some useful Computer Graphics resources on the course web page at

www.classes.cs.uchicago.edu/archive/2003/fall/23700/

Information about make is available atwww.gnu.org/software/make/ and online docu-
mentation can be found atwww.gnu.org/manual/make/html_chapter/make.html .

The CVS home page is atwww.cvshome.org/ . Official documentation is atwww.cvshome.
org/docs/manual/ . There is also a nice introduction to CVS atwww.cvshome.org/docs/
blandy.html .

4

