
CMSC 23700 Introduction to Computer Graphics Project 2
Fall 2003 October 30

Plant synthesis
Due: Monday, November 17

1 Introduction

One of the xenobiology groups at NASA has finally found alien DNA hanging out on some meteor
samples. Using Advanced Simulation TechniquesTM they have come up with some simple mor-
phology patterns for what appear to be plant like structures that may be created using this alien
DNA. Your job is to build a visualization tool to view the morphology of these lifeforms, and assist
the xenobotany group in chosing which plant would be the nicest to grow as gifts for important
congressional contacts.

2 Description

This assignment will require you to develop two systems. To begin, you will be provided with a
system that generates strings1 based on iterative application of string replacement rules (these are
also known asLindenmayer systemsor L-systems, and are named after the biologist who originated
this formalism for creating plant-like structures). You first need to develop a turtle graphics system
that parses the strings generated by the L-system API into ascene graphthat represents a three
dimensional structures. The second step is to create a viewer for the scene graph.

2.1 L-Systems

Your friends at NASA have already provided you with an engine to create the strings you will feed
to the turtle graphics system. This engine works by taking a seed string, and applying a set of rules
that will replace certain characters with another string. In its simplest form, an L-system is a context
free grammar where strings are generated by thesimultaneousreplacement of all nonterminals by
the right-hand side of their productions. For example, given the grammar

F ::= |[+F]RR|[−F]+F

and the start stringF , the first two iterations of the resulting L-system are as follows:

1Here we are using the term “string” in the formal language sense as a sequence of symbols. In the implementation it
is represented as a linked list.

F → |[+F]RR|[−F]+F

→ |[+|[+F]RR|[−F]+F]RR|[−|[+F]RR|[−F]+F]+|[+F]RR|[−F]+F

→ |[+|[+|[+F]RR|[−F]+F]RR|[−|[+F]RR|[−F]+F]+|[+F]RR|[−F]+F]RR|[−|[+|[+F]RR|
[−F]+F]RR|[−|[+F]RR|[−F]+F]+|[+F]RR|[−F]+F]+|[+|[+F]RR|[−F]+F]RR

|[−|[+F]RR|[−F]+F]+|[+F]RR|[−F]+F

Note that the characters “[,” “ |,” and “]” are symbols in this system and not meta-characters. To better
model alien plant-life, we extend this simple model of L-systems to allow arguments to be passed
into rules, to allow rules to be conditional on the values of its arguments, and to allow probabilities
to be associated with rules. The syntax of an L-system specification is as follows:

File
::= Definition∗ Start Rule∗

Definition
::= define Variable= Expr ;

Start
::= start : Module+ ;

Rule
::= ModuleName Paramsopt RHS+ ;

Params
::= (Variable(, Variable)∗)

RHS
::= Conditionopt -> Probabilityopt Module∗

Condition
::= : Expr

Probability
::= (Number)

Module
::= ModuleName
| ModuleName(Expr (, Expr)∗)

A specification consists of a sequence of definitions, followed by a start string, followed by a list
of rules for expanding modules.2 In its simplest form, a rule has a left-hand-side module and a
right-hand-side expansion. This form can be refined by adding parameters, a condition (i.e., the rule
only applies if the condition is true), and a probability. Modules on the right-hand-side of a rule can

2The term “module” is L-System terminology for a grammar symbol.

2

take arguments, which are written using the following simple expression language:

Expr
::= Expr | Expr
| Expr & Expr
| Expr = Expr
| Expr != Expr
| Expr <= Expr
| Expr < Expr
| Expr >= Expr
| Expr > Expr
| Expr + Expr
| Expr - Expr
| Expr * Expr
| Expr / Expr
| Expr ˆ Expr
| - Expr
| (Expr)
| Variable
| Number

Expressions are computed using floating-point arithmetic; boolean conditions are represented using
0.0 to represent false. The “ˆ ” operator is exponentiation.

Module names are single characters and can either be letters or one of a small collection of
special characters.

ModuleName
::= Symbol
| Letter

Symbol
::= + | - | ˆ | & | \ | / | | | $ | [|] | ! | ’ | * | %

Letter
::= a | b | c | . . . | x | y | z | A | B | C | . . . | X | Y | Z

As is discussed below, certain module names have special pre-defined meaning. Using this syntax,
the example from above might be specified as follows:

define maxgens = 3;
define delta = 16.8;
start : F;
F -> |[+F]RR|[-F]+F;

The definition of the variablemaxgens controls the number of iterations and the variabledelta
specifies the default angle for rotations.

NASA has provided a library to read and evaluate these L-Systems. The interface to this library
has the following functions:

3

LSystem_t *LoadLSystem (const char * file);
Module_t *EvaluateLSystem (LSystem_t * lsys , int nGens);
void FreeModules (Module_t * list);

TheLoadLSystem function reads an L-system description from a file and returns it. This function
returns a null pointer if there is an error. TheEvaluateLSystem function evaluates the L-system
for nGens iterations IfnGens ≤ 0, then the value of the variablemaxgen is used. starting with
the start string given by the L-system specification. It returns a newly allocated linked list of module
instances. The final function is used to free the list of modules returned fromEvaluateLSystem .

2.2 Turtle Graphics in the Third Dimension!

While growing strings alone may interesting to some people, we are not those people! Your mission
is to give life to the strings generated by the L-System module by interpreting each character as
a command to a “magic” anti-gravity turtle. Not only can our simulated turtle hover and move in
arbitrary three space, but much like Sesame Stree characters it can draw in mid-air.

The turtle’s state is managed using a state vector that keeps track of the turtle’s current position,
orientation, branch width, and drawing color. The turtle’s position and orientation define its local
coordinate system, which is used to interpret turtle commands. In addition to its current state, the
turtle has a stack on which it can push and pop its state. You are allowed to manage turtle orientation
in any fashion that generates correct visualizations.

The convention is that in the turtle’s coordinate system, the Z axis points forward, the X axis
points left, and the Y axis points up. Rotations around the Z axis are called rolls (rolling left is a
counterclockwise rotation and rolling right is a clockwise rotation). Rotation around the X axis is
calledpitch— pitching down is a clockwise rotation, while pitching up is counterclockwise. Finally,
rotation around the Y axis is calledturning3 — turning left is a clockwise rotation and turning right
is a counterclockwise rotation.

The turtle begins life at the world origin,(0, 0, 0), with its forward direction being along the
world’s positive Y-axis,(0, 1, 0) and up being along the world’s negative Z-axis,(0, 0,−1) (see
Figure 1). Thus the turtle’s initial Z axis corresponds to the world’s Y axis, the initial Y axis
corresponds to the world’s negative Z axis, and the turtle and world share a common X axis. The
initial branch width is 0.1 and the initial color is white.

Table 1 shows how each module in a turtle graphics input string is to be interpreted. The first
column gives the L-System module, the second is the name of the command as exported by the
L-System API, and the third column is the description of the command. Characters not listed on
the table should be silently ignored by your turtle. Note that some modules (e.g., “F” and “+”) have
both parameterized and unparameterized forms. The unparameterized forms are just shorthand for
default values, which are filled in by the L-System evaluator. Although the turtle does not see the

3In airplanes, the angle around the Y axis is called theyaw.

4

Table 1: Turtle commands

Module Command Description
F DRAW move forward one unit while extruding a cylinder of the

current width.
F(l) DRAW move forwardl while extruding a cylinder of the current

width.
f MOVE move forward one unit without drawing

f (l) MOVE move forwardl without drawing
+ LEFT turn left

+(d) LEFT turn left byd degrees
- RIGHT turn right

- (d) RIGHT turn right byd degrees
| FLIP turn around
ˆ UP pitch up

ˆ (d) UP pitch up byd degrees
& DOWN pitch down

&(d) DOWN pitch downd degrees
$ REVERSE Rotate turtle to vertical in the world coordinate system.
\ ROLLLEFT roll left

\ (d) ROLLLEFT roll left by d degrees.
/ ROLLRIGHT roll right

/ (d) ROLLRIGHT roll right by d degrees.
[PUSH Start a branch by pushing the current state on the stack.
] POP Complete a branch and restore the state by popping it off

the stack.
! WIDTH Multiply the current width factor by0.9

! (w) WIDTH Set the current width tow.
’ (r, g, b) SETCOLOR Set the current color
* (r, g, b) MULCOLOR Modulate the current color

C(r1, r2, h) CONE Draw a truncated cone of heightwh, base radiuswr1, and
top radiuswr2 at the current location, wherew is the cur-
rent width.

S(r) SPHERE Draw a sphere with radiuswr at the current location,
wherew is the current width.

L(w′, h1, h2, t) LEAF Draw a leaf with widthww′, minor heightwh1, major
height wh2, and thicknesswt, wherew is the current
width. Leaves are composed of 8 triangles arranged as
described in Section 2.3.

% n.a. truncate a branch. Occurrences of this module are elim-
inated inEvaluateLSystem and so should not occur
during drawing.

5

Z+

X+

Y+
Roll

Pitch

�����

Figure 1: Initial turtle orientation and rotation axes.

default forms, we give the translation for the sake of completeness:

F = F(1.0)
f = f (1.0)
+ = +(delta)
- = - (delta)
ˆ = ˆ (delta)
& = &(delta)
\ = \ (delta)
/ = / (delta)
! = ! (0.9)

2.3 Graphical objects

The turtle draws three basic shapes: truncated cones, spheres, and leaves.4 For the cones and leaves,
these are drawn with the major axis extending in the forward direction (positive Z-axis) of the
turtle’s coordinate system). Spheres are drawn with the center at the current turtle position.

Leaves are composed of eight triangles. The size of a leaf is controlled by four parameters: the
width w, the minor heighth1, the major heighth2, and the thicknesst. Figure 2 shows how these
parameters are interpreted.

2.4 Scene Graphs

Great, so we have this wacky little state vector wandering all over three space, what good does it
serve? Well, the answer is that your turtle sytem should be generating a scene graph while the turtle
is trundling about.

4It also draws cylinders, but a cylinder is just a trucated code where the bottom and top radii are the same.

6

 view Side view

origin originw t

h 1 h 2 h 2h 1

Figure 2: Leaf dimensions

Your scene graph should support creation of the following abstract elements:

• Union(elem1, elem2) — Luckily, our L-systems do not require all CSG operations, and you
will only need to provide some Union element for branching from the current point in the
scene.

• Cone(r1, r2, h) — Draw a cone in the current coordinate space along the positive Z-axis
with initial radius r1, final radius r2, and of height h.

• Sphere(r) — Draw a sphere of radius r in the current coordinate space, centered at the
turtle’s origin.

• Leaf(w, h1, h2, t) — Draw a leaf with widthw, minor heighth1, major heighth2, and thick-
nesst. Leaves are composed of 8 triangles arranged as described in Section 2.3.

• Color(r, b, g, elem) — Change the current color of child elements to〈r, b, g〉

You will also need to develop transformations. You should remember that the following are abstrac-
tions, and your actual implementation may choose to render the following as a single transformation
node, or as a property of the current object in the graph.

• RotateX(d, elem) – Rotate all child elementsd degrees about the X axis.

• RotateY(d, elem) – Rotate all child elementsd degrees about the Y axis.

• RotateZ(d, elem) – Rotate all child elementsd degrees about the Z axis.

• Translate(dx, dy, dz, elem) – Translate all child elements by the〈dx, dy, dz〉 vector.

Once you have constructed the scene graph representing the plant, you need to render it. Your viewer
can be a modification of the program you wrote for Project 0 and will support simple navigation.
It should render the plant on a flat surface (i.e., a rectangle located in the XZ-plane) and it should
rotate the plant at a rate of18◦ per second (i.e., one complete rotation every 20 seconds).

7

2.5 Shadows

Your viewer should provide a flat surface to place your plant on (i.e., a rectangle located in the XZ-
plane). To make your image more realistic, you should render the shadows it casts. We will discuss
real-time shadowing algorithms in class.

3 User Interface

Your program should take an L-System specification-file as a command-line argument. It should
load the file and the startup a viewer for the generated plant. Your viewer should support at least the
following keyboard commands:

space toggle rotation on/off
+ grow the plant for one more generation
- grow the plant for one fewer generation
w move the camera 0.05 units toward the “look-at” point.
s move the camera 0.05 units away from the “look-at” point.
a rotate the view location to the left1◦.
d rotate the view location to the right1◦.
l toggle the directional light.
q quit the viewer

Feel free to add other commands and mouse-based navigation.

4 Requirements

As with the previous projects, we will create a module in your course CVS repository on the Com-
puter Science CVS server. The module is namedproject-2 and contains the implementation of
the L-System. Your task is to design and implement a scene-graph representation; write an inter-
preter for the turtle that translates strings to scene graphs, and implement a viewer for your scene
graph representation that supports shadows. As before, submission will be via CVS.

5 Document history

Nov. 19 Fixed UI description.

Nov. 9 Fixed description of the relationship between the turtle’s inital orientation and world coor-
dinates.

Nov. 4 Added description of leaf nodes to scene graph discussion.

Nov. 2 Changed grammar for L-Systems slightly.

Oct. 30 Original version.

8

