
CMSC 23700 Introduction to Computer Graphics Handout 3
Fall 2003 October 14

The GML Specification
(Project 1 supplement)

1 The GML language

The ray tracer in Project-1 takes as input ascene description(or model) written in a functional
modeling language called GML. The language has a syntax and execution model that is similar to
PostScript (and Forth), but GML islexically scoped and does not have side effects. This document
specifies the syntax and semantics of GML.

1.1 Syntax

A GML program is written using a subset of the printable ASCII character set (including space),
plus tab, return, linefeed and vertical tab characters. The space, tab, return, linefeed and vertical tab
characters are calledwhitespace.

The characters%, [,] , {, } arespecialcharacters.

Any occurrence of the character “%” not inside a string literal (see below) starts a comment,
which runs to the end of the current line. Comments are treated as whitespace when tokenizing the
input file.

The syntax of GML is given in Figure 1 (anopt superscript means an optional item and a*
superscript means a sequence of zero or more items). A GML program is atoken list, which is
a sequence of zero or moretoken groups. A token group is either a single token, afunction (a
token list enclosed in ‘{’ ‘ }’), or an array (a token list enclosed in ‘[’ ‘] ’). Tokens do not have
to be separated by white space when it is unambiguous. Whitespace is not allowed in numbers,
identifiers, or binders.

Identifiers must start with an letter and can contain letters, digits, dashes (‘- ’), and underscores
(‘_’). A subset of the identifiers are used as predefinedoperators, which may not be rebound. A list
of the operators can be found in the appendix. A binder is an identifier prefixed with a ‘/ ’ character.

Booleans are either the literaltrue or the literalfalse . Like operators,true and false
may not be rebound.

Numbers are either integers or reals. The syntax of numbers is given by the following grammar:

Number
::= Integer
| Real

TokenList
::= TokenGroup∗

TokenGroup
::= Token
| { TokenList}
| [TokenList]

Token
::= Operator
| Identifier
| Binder
| Boolean
| Number
| String

Figure 1: GML grammar

Integer
::= - opt DecimalNumber

Real
::= - opt DecimalNumber. DecimalNumber Exponentopt

| - opt DecimalNumber Exponent

Exponent
::= e - opt DecimalNumber
| E - opt DecimalNumber

where aDecimalNumberis a sequence of one or more decimal digits. Integers represented by 32-bit
2’s complement values and reals by 64-bit IEEE floating-point values.

Strings are written enclosed in double quotes (‘" ’) and may contain any printable character other
than the double quote (but including the space character). There are no escape sequences.

1.2 Evaluation

We define the evaluation semantics of a GML program using an abstract machine. The state of
the machine is a triple〈Γ; α; c〉, whereΓ is an environment mapping identifiers to values,α is a
stack of values, andc is a sequence of token groups. More formally, we use the following semantic

2

〈Γ; α; ι c〉 =⇒ 〈Γ; α ι; c〉 (1)

〈Γ; α v ; /x c〉 =⇒ 〈Γ±{x 7→ v}; α; c〉 (2)

〈Γ; α; x c〉 =⇒ 〈Γ; α Γ(x); c〉 (3)

〈Γ; α; {c′} c〉 =⇒ 〈Γ; α (Γ, c′); c〉 (4)

〈Γ′; α; c′〉 =⇒∗ 〈Γ′′; β; ε〉
〈Γ; α (Γ′, c′); apply c〉 =⇒ 〈Γ; β; c〉

(5)

〈Γ; ε; c′〉 =⇒∗ 〈Γ′; v1 . . . vn; ε〉
〈Γ; α; [c′] c〉 =⇒ 〈Γ; α [v1 . . . vn]; c〉

(6)

〈Γ1; α; c1〉 =⇒∗ 〈Γ′′; β; ε〉
〈Γ; α true (Γ1, c1) (Γ2, c2); if c〉 =⇒ 〈Γ; β; c〉

(7)

〈Γ2; α; c2〉 =⇒∗ 〈Γ′′; β; ε〉
〈Γ; α false (Γ1, c1) (Γ2, c2); if c〉 =⇒ 〈Γ; β; c〉

(8)

α OPERATOR α′

〈Γ; β α; OPERATORc〉 =⇒ 〈Γ; β α′; c〉
(9)

Figure 2: Evaluation rules for GML

definitions:

i ∈ Int
ι ∈ BaseValue = Boolean∪ Int ∪ Real ∪ String
v ∈ Value = BaseValue ∪ Closure ∪Array ∪ Point ∪Object ∪ Light

(Γ, c) ∈ Closure = Env × Code
a, [v1 . . . vn] ∈ Array = Value∗

Γ ∈ Env = Id fin→ Value
α, β ∈ Stack = Value∗

c ∈ Code = TokenList

Evaluation from one state to another is written as〈Γ; α; c〉 =⇒ 〈Γ′; α′; c′〉. We define=⇒∗ to
be the transitive closure of=⇒. Figure 2 gives the GML evaluation rules. In these rules, we write
stacks with the top to the right (e.g.; α x is a stack withx as its top element) and token sequences
are written with the first token on the left. We useε to signify the empty stack and the empty code
sequence.

Rule 1 (Section 1) describes the evaluation of a literal token, which is pushed on the stack.
The next two rules describe the semantics of variable binding and reference. Rules 4 (Section 4)
and 5 (Section 5) describe function-closure creation and theapply operator. Rule 6 (Section 6)
describes the evaluation of an array expression; note that body of the array expression is evaluated
on an initially empty stack. The semantics of theif operator are given by Rules 7 (Section 7) and 8

3

(Section 8). The last evaluation rule (Rule 9 (Section 9)) describes how an operator (other than one
of the control operators) is evaluated. We write

α OPERATOR α′

to mean that the operatorOPERATORtransforms the stackα to the stackα′. This notation is used
below to specify the GML operators.

We writeEval(c, v1, . . . , vn) = (v ′
1, . . . , v ′

n) for when a programc yields(v ′
1, . . . , v ′

n) when
applied to the valuesv1, . . . , vn; i.e., when〈{}; v1 · · · vn; c〉 =⇒∗ 〈Γ; v ′

1 · · · , v ′
n; ε〉.

There is no direct support for recursion in GML, but one can program recursive functions by
explicitly passing the function as an extra argument to itself (see Section 1.7 for an example).

1.3 Control operators

GML contains twocontrol operators that can be used to implement control structures. These oper-
ators are formally defined in Figure 2, but we provide an informal description here.

The apply operator takes a function closure,(Γ, c), off the stack and evaluatesc using the
environmentΓ and the current stack. When evaluation ofc is complete (i.e., there are no more
instructions left), the previous environment is restored and execution continues with the instruction
after theapply . Argument and result passing is done via the stack. For example:

1 { /x x x } apply addi

will evaluate to2. Note that functions bind their variables according to the environment where they
are defined; not where they are applied. For example the following code evaluates to3:

1 /x % bind x to 1
{ x } /f % the function f pushes the value of x
2 /x % rebind x to 2
f apply x addi

The if operator takes two closures and a boolean off the stack and evaluates the first closure if
the boolean istrue, and the second if the boolean isfalse. For example,

b { 1 } { 2 } if

will result in 1 on the top of the stack ifb is true, and2 if it is false

1.4 Numbers

GML supports both integer and real numbers (which are represented by IEEE double-precision
floating-point numbers). Many of the numeric operators have both integer and real versions, so we
combine their descriptions in the following:

n1 n2 addi /addf n3

computes the sumn3 of the numbersn1 andn2.

r1 acos r2

computes the arc cosiner2 in degrees ofr1. The result is undefined ifr1 < −1 or 1 < r1.

4

r1 asin r2

computes the arc siner2 in degrees ofr1. The result is undefined ifr1 < −1 or 1 < r1.

r1 clampf r2

computesr2 =

0.0 r1 < 0.0
1.0 r1 > 1.0
r1 otherwise

.

r1 cos r2

computes the cosiner2 of r1 in degrees.

n1 n2 divi /divf n3

computes the quotientn3 of dividing the numbern1 by n2. Thedivi operator rounds its
result towards0. For thedivi operator, ifn2 is zero, then the program halts. Fordivf , the
effect of division by zero is undefined.

n1 n2 eqi /eqf b
compares the numbersn1 andn2 and pushestrue if n1 is equal ton2; otherwisefalse is
pushed.

r floor i
converts the realr to the greatest integeri that is less than or equal tor.

r1 frac r2

computes the fractional partr2 of the real numberr1. The resultr2 will always have the same
sign as the argumentr1.

n1 n2 lessi /lessf b
compares the numbersn1 andn2 and pushestrue if n1 is less thann2; otherwisefalse is
pushed.

i1 i2 modi i3
computes the remainderi3 of dividing i1 by i2. The following relation holds betweendivi
andmodi :

i2(i1 divi i2) + (i1 mod i2) = i1

n1 n2 muli /mulf n3

computes the productn3 of the numbersn1 andn2.

n1 negi /negf n2

computes the negationn2 of the numbern1.

i real r
converts the integeri to its real representationr.

r1 sin r2

computes the siner2 of r1 in degrees.

r1 sqrt r2

computes the square rootr2 of r1. If r1 is negative, then the interpreter should halt.

n1 n2 subi /subf n3

computes the differencen3 of subtracting the numbern2 from n1.

5

1.5 Points

A point is comprised of three real numbers. Points are used to represent positions, vectors, and
colors (in the latter case, the range of the components is restricted to[0.0, 1.0]). There are four
operations on points:

p getx x
gets the first componentx of the pointp.

p gety y
gets the second componenty of the pointp.

p getz z
gets the third componentz of the pointp.

x y z point p
creates a pointp from the realsx, y, andz.

1.6 Arrays

There are two operations on arrays:

arr i get vi

gets theith element of the arrayarr . Array indexing is zero based in GML. Ifi is out of
bounds, the GML interpreter should terminate.

arr length n
gets the number of elements in the arrayarr .

The elements of an array do not have to have the same type and arrays can be used to construct data
structures. For example, we can implement lists using two-element arrays for cons cells and the
zero-length array for nil.

[] /nil
{ /cdr /car [car cdr] } /cons

We can also write a function that “pattern matches” on the head of a list.

{ /if-cons /if-nil /lst
lst length 0 eqi
if-nil
{ lst 0 get lst 1 get if-cons apply }
if

}

1.7 Examples

Some simple function definitions written in GML:

6

{ } /id % the identity function
{ 1 addi } /inc % the increment function
{ /x /y x y } /swap % swap the top two stack locations
{ /x x x } /dup % duplicate the top of the stack
{ dup apply muli } /sq % the squaring function
{ /a /b a { true } { b } if } /or % logical-or function
{ /p % negate a point value

p getx negf
p gety negf
p getz negf point

} /negp

A more substantial example is the GML version of the recursive factorial function:

{ /self /n
n 2 lessi
{ 1 }
{ n 1 subi self self apply n muli }
if

} /fact

Notice that this function follows the convention of passing itself as the top-most argument on the
stack. We can compute the factorial of12 with the expression

12 fact fact apply

2 Ray tracing operations

In this section, we describe how the GML interpreter supports ray tracing.

2.1 Coordinate systems

GML models are defined in terms of two coordinate systems:world coordinatesandobject coordi-
nates. World coordinates are used to specify the position of lights while object coordinates are used
to specify primitive objects. There are sixtransformationoperators (described in Section 2.3) that
are used to map object space to world space.

The world-coordinate system isleft-handed. TheX-axis goes to the right, theY -axis goes up,
and theZ-axis goes away from the viewer.

2.2 Geometric primitives

There are five operations in GML for constructing primitive solids:sphere , cube , cylinder ,
cone , andplane . Each of these operations takes a single function as an argument, which defines
the primitive’s surface properties (see Section 2.6).

surface sphere obj
creates a sphere of radius1 centered at the origin with surface properties specified by the
functionsurface. Formally, the sphere is defined byx2 + y2 + z2 ≤ 1.

surface cube obj
creates a unit cube with opposite corners(0, 0, 0) and(1, 1, 1). The functionsurface specifies

7

the cube’s surface properties. Formally, the cube is defined by0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
0 ≤ z ≤ 1.

surface cylinder obj
creates a cylinder of radius1 and height1 with surface properties specified by the function
surface. The base of the cylinder is centered at(0, 0, 0) and the top is centered at(0, 1, 0)
(i.e., the axis of the cylinder is theY -axis). Formally, the cylinder is defined byx2 + z2 ≤ 1
and0 ≤ y ≤ 1.

surface cone obj
creates a cone with base radius1 and height1 with surface properties specified by the function
surface. The apex of the cone is at(0, 0, 0) and the base of the cone is centered at(0, 1, 0).
Formally, the cone is defined byx2 + z2 − y2 ≤ 0 and0 ≤ y ≤ 1.

surface plane obj
creates a plane object with the equationy = 0 with surface properties specified by the function
surface. Formally, the plane is the half-spacey ≤ 0.

2.3 Transformations

Fixed size objects at the origin are not very interesting, so GML providestransformationoperations
to place objects in world space. Each transformation operator takes an object and one or more reals
as arguments and returns the transformed object. The operations are:

obj rtx rty rtz translate obj ′

translatesobj by the vector(rtx , rty , rtz). I.e., if obj is at position(px, py, pz), thenobj ′ is at
position(px + rtx , py + rty , pz + rtz).

obj rsx rsy rsz scale obj ′

scalesobj by rsx in theX-dimension,rsy in theY -dimension, andrsz in theZ dimension.

obj rs uscale obj ′

uniformly scalesobj by rs in each dimension. This operation is calledIsotropic scaling.

obj θ rotatex obj ′

rotatesobj around theX-axis byθ degrees. Rotation is measured counterclockwise when
looking along theX-axis from the origin towards+∞.

obj θ rotatey obj ′

rotatesobj around theY -axis byθ degrees. Rotation is measured counterclockwise when
looking along theY -axis from the origin towards+∞.

obj θ rotatez obj ′

rotatesobj around theZ-axis byθ degrees. Rotation is measured counterclockwise when
looking along theZ-axis from the origin towards+∞.

For example, if we want to put a sphere of radius2.0 at (5.0, 5.0, 5.0), we can use the following
GML code:

{ ... } sphere
2.0 uscale
5.0 5.0 5.0 translate

8

1 0 0 rtx

0 1 0 rty

0 0 1 rtz

0 0 0 1

rsx 0 0 0
0 rsy 0 0
0 0 rsz 0
0 0 0 1

rs 0 0 0
0 rs 0 0
0 0 rs 0
0 0 0 1

Translation Scale matrix Isotropic scale matrix

1 0 0 0
0 cos(θ) − sin(θ) 0
0 sin(θ) cos(θ) 0
0 0 0 1

cos(θ) 0 sin(θ) 0
0 1 0 0

− sin(θ) 0 cos(θ) 0
0 0 0 1

cos(θ) − sin(θ) 0 0
sin(θ) cos(θ) 0 0

0 0 1 0
0 0 0 1

Rotation (X-axis) Rotation (Y -axis) Rotation (Z-axis)

Figure 3: Transformation matrices

The first line creates the sphere (as described in Section 2.2, thesphere operator takes a single
function argument). The second line uniformly scales the sphere by a factor of2.0, and the third
line translates the sphere to(5.0, 5.0, 5.0).

These transformations are allaffinetransformations and they have the property of preserving the
straightness of lines and parallelism between lines, but they can alter the distance between points and
the angle between lines. Usinghomogeneous coordinates, these transformations can be expressed
as multiplication by a4×4 matrix. Figure 3 describes the matrices that correspond to each of the
transformation operators. For example, translating the point(2.6, 3.0,−5.0) by (−1.6,−2.0, 6.0)
is expressed as the following multiplication:

1.0 0.0 0.0 −1.6
0.0 1.0 0.0 −2.0
0.0 0.0 1.0 6.0
0.0 0.0 0.0 1.0

2.6
3.0
−5.0
1.0

 =

1.0
1.0
1.0
1.0

Observe that points have a fourth coordinate of1, whereas vectors have a fourth coordinate of0.
Thus, translation has no effect on vectors.

2.4 Illumination model

When the ray that shoots from the eye position through a pixel hits a surface, we need to apply
the illumination equation to determine what color the pixel should have. Figure 4 shows a situation
where a ray from the viewer has hit a surface. The illumination at this point is given by the following
equation:

I = kdIaC + kd

ls∑
j=1

max(N · Lj , 0)IjC + ks

ls∑
j=1

(N ·Hj)nIj + ksIs (10)

9

NLj
Hj

Light j

S

Viewer

Surface

θ θ
φ

φ

Figure 4: A ray intersecting a surface

where
C = surface color
Ia = intensity of ambient lighting
kd = diffuse reflection coefficient
N = unit surface normal
Lj = unit vector in direction ofjth light source
Ij = intensity ofjth light source
ks = specular reflection coefficient
Hj = unit vector in the direction halfway between the viewer andLj

n = Phong exponent
S = reflection vector
Is = intensity of light from directionS

The four components of this equation correspond to the local ambient lighting, the local diffuse
lighting, the local specular lighting, and the global reflection (resp.). The view vector,N, andS all
lie in the same plane. The vectorS is called thereflectionvector and forms the same angle withN
as the vector to the viewer does (this angle is labeledθ in Figure 4). Light intensity is represented
as point in GML and multiplication of points is component wise. The values ofC, kd, ks, andn are
thesurface propertiesof the object at the point of reflection. Section 2.6 describes the mechanism
for specifying these values for an object.

Computing the contribution of lights (theIj part of the above equation) requires casting a
shadow rayfrom the intersection point to the light’s position. If the ray hits an object that is closer
than the light, then the light does not contribute to the illumination of the intersection point.

Ray tracing is a recursive process. Computing the value ofIs requires shooting a ray in the
direction ofS and seeing what object (if any) it intersects. To avoid infinite recursion, we limit
the tracing to somedepth. The depth limit is given as an argument to therender operator (see
Section 2.8).

10

pos

at

cutoff

Figure 5: Spotlight

2.5 Lights

GML supports three types of light sources:directional lights, point lightsandspotlights. Directional
lights are assumed to be infinitely far away and have only a direction. Point lights have a position and
an intensity (specified as a color triple), and they emit light uniformly in all directions. Spotlights
emit a cone of light in a given direction. The light cone is specified by three parameters: the light’s
direction, the light’s cutoff angle, and an attenuation exponent (see Figure 5). Unlike geometric
objects, lights are defined in terms of world coordinates.

dir color light l
creates a directional light source at infinity with directiondir and intensitycolor . Bothdir
andcolor are specified as point values.

pos color pointlight l
creates a point-light source at the world coordinate positionpos with intensitycolor . Both
pos andcolor are specified as point values.

pos at color cutoff exp spotlight l
creates a spotlight source at the world coordinate positionpos pointing towards the position
at . The light’s color is given bycolor . The spotlight’s cutoff angle is given in degrees by
cutoff and the attenuation exponent is given byexp (these are real numbers). The intensity of
the light from a spotlight at a pointQ is determined by the angle between the light’s direction
vector (i.e., the vector frompos to at) and the vector frompos to Q. If the angle is greater
than the cutoff angle, then intensity is zero; otherwise the intensity is given by the equation

I =
(

at − pos
|at − pos|

· Q− pos
|Q− pos|

)exp

color (11)

The light from point lights and spotlights is attenuated by the distance from the light to the surface.
The attenuation equation is:

Isurface =
I

a0 + a1d + a2d2
(12)

11

Table 1: Texture coordinates for primitives

SPHERE
(0, u, v) (

√
1− y2 sin(2πu), y,

√
1− y2 cos(2πu)), wherey = 2v − 1

CUBE
(0, u, v) (u, v, 0) front
(1, u, v) (u, v, 1) back
(2, u, v) (0, v, u) left
(3, u, v) (1, v, u) right
(4, u, v) (u, 1, v) top
(5, u, v) (u, 0, v) bottom

CYLINDER
(0, u, v) (sin(2πu), v, cos(2πu)) side
(1, u, v) (2u− 1, 1, 2v − 1) top
(2, u, v) (2u− 1, 0, 2v − 1) bottom

CONE
(0, u, v) (v sin(2πu), v, v cos(2πu)) side
(1, u, v) (2u− 1, 1, 2v − 1) base

PLANE
(0, u, v) (u, 0, v)

whereI is the intensity of the light,d is the distance from the light to the surface, and theai

are the attenuation coefficients given to therender command (see Section 2.8). Note that the
light reflected from surfaces (theksIs term in Equation 10) isnot attenuated; nor is the light from
directional sources.

2.6 Surface functions

GML usesprocedural texturingto describe the surface properties of objects. The basic idea is that
the model provides a function for each object, which maps positions on the object to the surface
properties that determine how the object is illuminated (see Section 2.4).

A surface function takes three arguments: an integer specifying an object’s face and two texture
coordinates. For all objects, except planes, the texture coordinates are restricted to the range0 ≤
u, v ≤ 1. The Table 1 specifies how these coordinates map to points in object-space for the various
builtin graphical objects. Note that the arguments to thesin andcos functions are in radians. The
GML implementation is responsible for the inverse mapping;i.e., given a point on a solid, compute
the texture coordinates.

A surface function returns a point representing the surface color (C), and three real numbers: the
diffuse reflection coefficient (kd), the specular reflection coefficient (ks), and the Phong exponent
(n). For example, the code in Figure 6 defines a cube with a matte3×3 black and white checked
pattern on each face.

12

0.0 0.0 0.0 point /black
1.0 1.0 1.0 point /white

[% 3x3 pattern
[black white black]
[white black white]
[black white black]

] /texture

{ /v /u /face % bind parameters
{ % toIntCoord : float -> int

3.0 mulf floor /i % i = floor(3.0*r)
i 3 eqi { 2 } { i } if % make sure i is not 3

} /toIntCoord
texture u toIntCoord apply get % color = texture[u][v]

v toIntCoord apply get
1.0 % kd = 1.0
0.0 % ks = 0.0
1.0 % n = 1.0

} cube

Figure 6: A checked pattern on a cube

2.7 Constructive solid geometry

Solid objects may be combined using boolean set operations to form more complex solids. There
are three composition operations:

obj 1 obj2 union obj3
forms the unionobj3 of the two solidsobj 1 andobj 2.

obj 1 obj2 intersect obj3
forms the intersectionobj3 of the two solidsobj 1 andobj 2.

obj 1 obj2 difference obj3
forms the solidobj 3 that is the solidobj 1 minus the solidobj 2.

We can determine the intersection of a ray and a compound solid by recursively computing
the intersections of the ray and the solid’s pieces (both entries and exits) and then merging the
information according to the boolean composition operator. Figure 7 illustrates this process for two
objects (this picture is called aRoth diagram).

When rendering a composite object, the surface properties are determined by the primitive that
defines the surface. If the surfaces of two primitives coincide, then which primitive defines the
surface properties is unspecified.

2.8 Rendering

Therender operator causes the scene to be rendered to a file.

amb lights attn obj depth fov wid ht file render —

13

A
B

A+B
A&B
A-B
B-A

A

B

Figure 7: Tracing a ray through a compound solid

The render operator renders a scene to a file. It takes nine arguments:

amb the intensity of ambient light (a point).

lights is an array of lights used to illuminate the scene.

attn is a point that represents the light-attenuation coefficients (see Section 2.5), with thea0 coef-
ficient corresponding to thex component ofattn, a1 corresponding to they component, and
a1 corresponding to thez component.

obj is the scene to render.

depth is an integer limit on the recursive depth of the ray tracing owing to specular reflection.
I.e., whendepth = 0, we do not recursively compute the contribution from the direction of
reflection (S in Figure 4).

fov is the horizontal field of view in degrees (a real number).

wid is the width of the rendered image in pixels (an integer).

ht is the height of the rendered image in pixels (an integer).

file is a string specifying output file for the rendered image.

The render operator is the only GML operator with side effects (i.e., it modifies the host file
system). A GML program may contain multiplerender operators (for animation effects), but the

14

+Y

+Z

+X(0,0,0)

view plane

eye point

ray

Figure 8: View coordinate system

order in which the output files are generated is implementation dependent. The results of evaluating
the render operator during the evaluation of a surface function are undefined (i.e., your program
may choose to exit with an error, or execute the operation, or do something else).

When rendering a scene, the eye position is fixed at(0, 0,−1) looking down theZ-axis and the
image plane is theXY -plane (see Figure 8). The horizontal field of view (fov) determines the width
of the image in world space (i.e., it is 2 tan(0.5fov)), and the height is determined from the aspect
ratio. If the upper-left corner of the image is at(x, y, 0) and the width of a pixel is∆, then the ray
through thejth pixel in theith row has a direction of(x + (j + 0.5)∆, y − (i + 0.5)∆, 1).

When the render operation detects that a ray has intersected the surface of an object, it must
compute the texture coordinates at the point of intersection and apply the surface function to them.
Let (face, u, v) be the texture coordinates andsurf be the surface function at the point of intersec-
tion, and let

Eval(surf apply , face, u, v) = (C, kd, ks, n)

Then the surface properties for the illumination equation (see Section 2.4) areC, kd, ks, andn.

2.9 The output format

The output format is thePortable Pixmap(PPM) file format.1 The format consists of a ASCII
header followed by the pixel data in binary form. The format of the header is

• The magic number, which are the two characters “P6.”

• A width, formatted as ASCII characters in decimal.

• A height, again in ASCII decimal.

1On Linux systems, thexv program can be used to view these files and on MacOS X you can use theGraphicsCon-
verter application.

15

• The ASCII text “255 ,” which is the maximum color-component value.

These items are separated by whitespace (blanks, TABs, CRs, and LFs). After the maximum color
value, there is a single whitespace character (usually a newline), which is followed by the pixel data.
The pixel data is a sequence of three-byte pixel values (red, green, blue) in row-major order. Light
intensity values (represented as GML points) are converted to RGB format by clamping the range
and scaling.

In the header, characters from a “#” to the next end-of-line are ignored (comments). This
comment mechanism should be used to include the group’s name immediately following the line
with the magic number. For example, the sample implementation produces the following header:

P6
GML Sample Implementation
256 256
255

Operator summary

The following is an alphabetical listing of the GML operators with brief descriptions. The third
column lists the section where the operator is defined and the fourth column specifies whether the
operator is provided by by us are to be implemented by you.

Name Description Section Provided?
acos arc cosine function 1.4 Yes
addi integer addition 1.4 Yes
addf real addition 1.4 Yes
apply function application operator 1.3 Yes
asin arc sine function 1.4 Yes
clampf clamp the range of a real number 1.4 Yes
cone a unit cone 2.2 No
cos cosine function 1.4 Yes
cube a unit cube 2.2 No
cylinder a unit cylinder 2.2 No
difference difference of two solids 2.7 No
divi integer division 1.4 Yes
divf real division 1.4 Yes
eqi integer equality comparison 1.4 Yes
eqf real equality comparison 1.4 Yes
false push thefalsevalue ?? Yes
floor real to integer conversion 1.4 Yes
frac fractional part of real number 1.4 Yes
get get an array element 1.6 Yes
getx getx component of point 1.5 Yes
gety gety component of point 1.5 Yes
getz getz component of point 1.5 Yes
if conditional control operator 1.3 Yes
intersect intersection of two solids 2.7 No
length array length 1.6 Yes

16

Name Description Section Provided?
lessi integer less-than comparison 1.4 Yes
lessf real less-than comparison 1.4 Yes
light defines a directional light source 2.5 Yes
modi integer remainder 1.4 Yes
muli integer multiplication 1.4 Yes
mulf real multiplication 1.4 Yes
negi integer negation 1.4 Yes
negf real negation 1.4 Yes
plane theXZ-plane 2.2 No
point create a point value 1.5 Yes
pointlight defines a point-light source 2.5 Yes
real convert an integer to a real number 1.4 Yes
render render a scene to a file 2.8 No
rotatex rotation around theX-axis 2.3 No
rotatey rotation around theY -axis 2.3 No
rotatez rotation around theZ-axis 2.3 No
scale scaling transform 2.3 No
sin sine function 1.4 Yes
sphere a unit sphere 2.2 No
spotlight defines a spotlight source 2.5 Yes
sqrt square root 1.4 Yes
subi integer subtraction 1.4 Yes
subf real subtraction 1.4 Yes
translate translation transform 2.3 No
true push thetrue value ?? Yes
union union of two solids 2.7 No
uscale uniform scaling transform 2.3 No

17

