CMSC 23700 Introduction to Computer Graphics Handout 3
Fall 2003 October 14

The GML Specification
(Project 1 supplement)

1 The GML language

The ray tracer in Project-1 takes as inpus@ne descriptioifor mode) written in a functional
modeling language called GML. The language has a syntax and execution model that is similar to
PostScript (and Forth), but GML Iexically scoped and does not have side effects. This document
specifies the syntax and semantics of GML.

1.1 Syntax

A GML program is written using a subset of the printable ASCII character set (including space),
plus tab, return, linefeed and vertical tab characters. The space, tab, return, linefeed and vertical tab
characters are calleghitespace

The character% [,], {, } arespecialcharacters.

Any occurrence of the characte?‘ not inside a string literal (see below) starts a comment,
which runs to the end of the current line. Comments are treated as whitespace when tokenizing the
input file.

The syntax of GML is given in Figure 1 (ampt superscript means an optional item ant a
superscript means a sequence of zero or more items). A GML progrartokea list which is
a sequence of zero or moteken groups A token group is either a single tokenfanction (a
token list enclosed in{" * }'), or anarray (a token list enclosed ir{* ‘] ’). Tokens do not have
to be separated by white space when it is unambiguous. Whitespace is not allowed in numbers,
identifiers, or binders.

Identifiers must start with an letter and can contain letters, digits, dashgsafid underscores
(‘). A subset of the identifiers are used as predefimgerators which may not be rebound. A list
of the operators can be found in the appendix. A binder is an identifier prefixed witlcladracter.

Booleans are either the litertie or the literalfalse . Like operatorsirue andfalse
may not be rebound.

Numbers are either integers or reals. The syntax of numbers is given by the following grammar:

Number
== Integer
| Real

TokenList
== TokenGroup

TokenGroup
= Token
| { TokenList}
| [TokenLisf

Token
= Operator

| Identifier

| Binder

| Boolean

| Number

| String

Figure 1: GML grammar

Integer
w= - 9%tDecimalNumber

Real
= -%!DecimalNumber DecimalNumber Exponeitt

| - °PtDecimalNumber Exponent

Exponent
= e - °P'DecimalNumber
| E-°PtDecimalNumber

where aDecimalNumbers a sequence of one or more decimal digits. Integers represented by 32-bit
2’'s complement values and reals by 64-bit IEEE floating-point values.

Strings are written enclosed in double quoté&s)(@nd may contain any printable character other
than the double quote (but including the space character). There are no escape sequences.

1.2 Evaluation

We define the evaluation semantics of a GML program using an abstract machine. The state of
the machine is a tripl€l’; «; ¢), whereI is an environment mapping identifiers to valuass a
stack of values, andis a sequence of token groups. More formally, we use the following semantic

(T a5 0e) = (T'; ar;) (@)

(s avw; Jzc) = (T'+{z — v} o5))
(I3 a5 2 ¢) = ([; al(2); ¢) (3)
([a; {c} o) = (T5 (T, ¢); c) (4)
(I's a; Yy =* (I B; €) 5)
(I5 a (I, ¢); apply ¢) = (T; 5; ¢)
(Tye;) =*(T"; v1 ... vn; €)
(T; o [¢'] ¢) = (T a[ur ...) €) ©
(F1; a5 c1) =" (I'; B; €) @)
(I'; atrue (I'y, 1) (T, e2); if ¢) = (T; 5; ¢)
(La; o; ca) =" (I f; €) ®)
(I'; afalse (T', 1) (T2, 2); if ¢) = (T; B; ¢)
a OPERATOR o/)

(T'; Ba; OPERATOR) = (T'; B o/; ¢)

Figure 2: Evaluation rules for GML

definitions:
¢ € Int
t € BaseValue = Booleanu Int U Real U String
v € Value = BaseValue U Closure U Array U Point U Object U Light
(I',e) € Closure = Env x Code

a,[vi ... v] € Array = Value®

I' € Env=Id" Value
a,3 € Stack = Value®

¢ € Code = TokenList

Evaluation from one state to another is written(Bs a; ¢) = (I"; o/; ¢/). We define=—* to

be the transitive closure ef=-. Figure 2 gives the GML evaluation rules. In these rules, we write
stacks with the top to the righe(g; « z is a stack withz as its top element) and token sequences
are written with the first token on the left. We us#o signify the empty stack and the empty code
sequence.

Rule 1 (Section 1) describes the evaluation of a literal token, which is pushed on the stack.
The next two rules describe the semantics of variable binding and reference. Rules 4 (Section 4)
and 5 (Section 5) describe function-closure creation ancipdy operator. Rule 6 (Section 6)
describes the evaluation of an array expression; note that body of the array expression is evaluated
on an initially empty stack. The semantics of theoperator are given by Rules 7 (Section 7) and 8

3

(Section 8). The last evaluation rule (Rule 9 (Section 9)) describes how an operator (other than one
of the control operators) is evaluated. We write

a OPERATOR

to mean that the operat@PERATORansforms the stack to the stacky’. This notation is used
below to specify the GML operators.

We writeEval(c, v1, ..., v,) = (v, ..., v,,) for when a program yields (v{, ..., v}) when

applied to the values,, ..., v,;i.e, when{{}; v; -+ vy; ¢) =* (T; v] -+ ,v);).

There is no direct support for recursion in GML, but one can program recursive functions by
explicitly passing the function as an extra argument to itself (see Section 1.7 for an example).

1.3 Control operators

GML contains twocontrol operators that can be used to implement control structures. These oper-
ators are formally defined in Figure 2, but we provide an informal description here.

The apply operator takes a function closur@;, c¢), off the stack and evaluatesusing the
environmentl” and the current stack. When evaluationcois complete ice., there are no more
instructions left), the previous environment is restored and execution continues with the instruction
after theapply . Argument and result passing is done via the stack. For example:

1{ /x x x} apply addi

will evaluate to2. Note that functions bind their variables according to the environment where they
are defined; not where they are applied. For example the following code evaluates to

1 /x % bind x to 1

{x}If % the function f pushes the value of x
2 Ix % rebind x to 2

f apply x addi

Theif operator takes two closures and a boolean off the stack and evaluates the first closure if
the boolean isrue, and the second if the boolearfidse For example,

b{1}{2}if
will result in 1 on the top of the stack i is true, and2 if it is false

1.4 Numbers

GML supports both integer and real numbers (which are represented by IEEE double-precision
floating-point numbers). Many of the numeric operators have both integer and real versions, so we
combine their descriptions in the following:

ny ne addi /addf ng
computes the sums of the numbers,; andns.

rt acos 1o
computes the arc cosing in degrees of1. The resultis undefined ify < —1orl < ry.

ry asin ro
computes the arc sing in degrees of. The result is undefined if, < —1or1 < ry.

ry clampf 7y
0.0 r <0.0
computess =< 1.0 r; > 1.0
r1 otherwise

rt COS 19
computes the cosing of r1 in degrees.

ny ng divi /divf n3
computes the quotients of dividing the numbem, by ns. Thedivi operator rounds its
result toward$). For thedivi operator, ifns is zero, then the program halts. Fbvf |, the
effect of division by zero is undefined.

nyne eqi /eqf b
compares the numbers andns and pushesrue if n; is equal tons; otherwisefalse is
pushed.

r floor i
converts the real to the greatest integeéthat is less than or equal to

ry frac r9
computes the fractional pari of the real number;. The result will always have the same
sign as the argument.

ny ng lessi /lessf b
compares the numbers andnsy and pushesrue if ny is less thams; otherwisefalse is
pushed.

11 19 modi i3
computes the remaindéy of dividing i; by is. The following relation holds betweetivi
andmodi :
i2(ildivi i2) + (i1 modi2) = il

ny ng muli /mulf ng
computes the produet; of the numbers; andns.

ny negi /negf ng
computes the negation, of the numbenm; .

i real r
converts the integerto its real representatian

1 sin 79
computes the sing, of r; in degrees.

1 sqrt 79
computes the square rost of r1. If r1 is negative, then the interpreter should halt.

n1 ny Subi /SUbf ns
computes the differenceg; of subtracting the number, from n;.

1.5 Points

A point is comprised of three real numbers. Points are used to represent positions, vectors, and
colors (in the latter case, the range of the components is restrict@dtd.0]). There are four
operations on points:

p getx =«
gets the first componentof the pointp.

p gety y
gets the second componenbdf the pointp.

p getz =z
gets the third componentof the pointp.

xyz point p
creates a point from the realse, y, andz.

1.6 Arrays

There are two operations on arrays:

arri get v
gets theith element of the arrayrr. Array indexing is zero based in GML. ffis out of
bounds, the GML interpreter should terminate.

arr length n
gets the number of elements in the array.

The elements of an array do not have to have the same type and arrays can be used to construct data
structures. For example, we can implement lists using two-element arrays for cons cells and the
zero-length array for nil.

0 /nil

{ lcdr /car [car cdr] } /cons

We can also write a function thapattern matche'son the head of a list.

{ /if-cons [if-nil /Ist
Ist length O eqi
if-nil
{ Ist O get Ist 1 get if-cons apply }
if

1.7 Examples

Some simple function definitions written in GML:

{1} /d % the identity function

{1 addi } /inc % the increment function
{Ixly xy} Iswap % swap the top two stack locations
{ Ix x x } /dup % duplicate the top of the stack
{ dup apply muli } /sq % the squaring function
{/a/ba{tue}{b}if} Jor % logical-or function
{/p % negate a point value
p getx nedf
p gety negf
p getz negf point
} /negp
A more substantial example is the GML version of the recursive factorial function:
{ Iself In
n 2 lessi
{1}

{ n 1 subi self self apply n muli }
if
} [fact

Notice that this function follows the convention of passing itself as the top-most argument on the
stack. We can compute the factorialld with the expression

12 fact fact apply

2 Ray tracing operations

In this section, we describe how the GML interpreter supports ray tracing.

2.1 Coordinate systems

GML models are defined in terms of two coordinate systenwid coordinatesandobject coordi-

nates World coordinates are used to specify the position of lights while object coordinates are used
to specify primitive objects. There are giransformationoperators (described in Section 2.3) that
are used to map object space to world space.

The world-coordinate system lisft-handed The X -axis goes to the right, thE-axis goes up,
and theZ-axis goes away from the viewer.

2.2 Geometric primitives

There are five operations in GML for constructing primitive soligghere , cube, cylinder
cone, andplane . Each of these operations takes a single function as an argument, which defines
the primitive’s surface properties (see Section 2.6).

surface sphere obj
creates a sphere of raditscentered at the origin with surface properties specified by the
function surface. Formally, the sphere is defined by + y% + 22 < 1.

surface cube obj
creates a unit cube with opposite corn@rd, 0) and(1, 1, 1). The functionsurface specifies

7

the cube’s surface properties. Formally, the cube is defined fyr < 1,0 <y < 1, and
0<2z<1.

surface cylinder obj
creates a cylinder of radiusand heightl with surface properties specified by the function
surface. The base of the cylinder is centered(@t0,0) and the top is centered &1, 1,0)
(i.e., the axis of the cylinder is th&-axis). Formally, the cylinder is defined by + 22 < 1
and0 <y < 1.

surface cone obj
creates a cone with base radiuand heightl with surface properties specified by the function
surface. The apex of the cone is &0, 0,0) and the base of the cone is centeredoat, 0).
Formally, the cone is defined by + 22 — y?> < 0and0 < y < 1.

surface plane obj
creates a plane object with the equatios 0 with surface properties specified by the function
surface. Formally, the plane is the half-spage< 0.

2.3 Transformations

Fixed size objects at the origin are not very interesting, so GML protrdesformatiornoperations
to place objects in world space. Each transformation operator takes an object and one or more reals
as arguments and returns the transformed object. The operations are:

obj riy Ty T, translate obj’
translatesbj by the vector(ry,, 74y, 7+,). l.€., if 0bj is at position(p,, py, p-), thenoby’ is at
POSItion (ps, + Tty Py + Tty P2 + Ttz

0bj Tey Tsy 75, SCale obj’
scalesobj by ry, in the X-dimensiony, in theY -dimension, and,, in the Z dimension.

obj rs uscale obj’
uniformly scalesvbj by r, in each dimension. This operation is calledtropic scaling

obj 6 rotatex obj’
rotatesobj around theX-axis byf degrees. Rotation is measured counterclockwise when
looking along theX -axis from the origin towards-oco.

obj 6 rotatey obj’
rotatesobj around theY -axis by# degrees. Rotation is measured counterclockwise when
looking along theY"-axis from the origin towards-oo.

obj 6 rotatez obj’
rotatesob;j around theZ-axis by# degrees. Rotation is measured counterclockwise when
looking along theZ-axis from the origin towardsg-co.

For example, if we want to put a sphere of radg at (5.0, 5.0,5.0), we can use the following
GML code:

{ ... } sphere
2.0 uscale
5.0 5.0 5.0 translate

1 0 0 ry rse 0 0 0 rs 0 0 0
0 1 0 7y 0 7y 0 O 0 r¢ 0 O
0 0 1 7y 0 0 75 O 0 0 rs O
000 1 0 0 0 1 0 0 0 1
Translation Scale matrix Isotropic scale matrix
1 0 0 0 cos(f) 0 sin(f) O cos(f) —sin(d) 0 0O
0 cos(f) —sin(f) 0O 0 1 0 0 sin(@) cos(d) 0 O
0 sin(f) cos(@#) O —sin(f#) 0 cos(f) O 0 0 10
0 0 0 1 0 0 0 1 0 0 01
Rotation (X -axis) Rotation Y -axis) Rotation £-axis)

Figure 3: Transformation matrices

The first line creates the sphere (as described in Section 2.8ptlere operator takes a single
function argument). The second line uniformly scales the sphere by a facd, atind the third
line translates the sphere {®.0, 5.0, 5.0).

These transformations are affinetransformations and they have the property of preserving the
straightness of lines and parallelism between lines, but they can alter the distance between points and
the angle between lines. Usilgmogeneous coordinatebese transformations can be expressed
as multiplication by al x4 matrix. Figure 3 describes the matrices that correspond to each of the
transformation operators. For example, translating the gaidt 3.0, —5.0) by (—1.6, —2.0,6.0)
is expressed as the following multiplication:

1.0 0.0 0.0 —16 2.6 1.0
0.0 1.0 0.0 —2.0 30 | | 10
0.0 0.0 1.0 6.0 5.0 | ~ | 1.0
0.0 0.0 0.0 1.0 1.0 1.0

Observe that points have a fourth coordinatd ofvhereas vectors have a fourth coordinaté.of
Thus, translation has no effect on vectors.

2.4 lllumination model

When the ray that shoots from the eye position through a pixel hits a surface, we need to apply
the illumination equation to determine what color the pixel should have. Figure 4 shows a situation
where a ray from the viewer has hit a surface. The illumination at this point is given by the following
equation:

Is Is
I=kaloC + kg » max(N-Lj,0);C + ks » (N -H;)"I; + kI, (10)
j=1 j=1

Viewer
7/

Surface

Figure 4: A ray intersecting a surface

where

C = surface color

I, = Iintensity of ambient lighting

kg = diffuse reflection coefficient

N = unit surface normal

L; = unitvector in direction ofjith light source
I; = intensity ofjth light source

ks = specular reflection coefficient

H; = unitvector inthe direction halfway between the viewer &nd
n = Phong exponent
S = reflection vector

I; = intensity of light from directiorS

The four components of this equation correspond to the local ambient lighting, the local diffuse
lighting, the local specular lighting, and the global reflection (resp.). The view vé§tandS all

lie in the same plane. The vect8ris called thereflectionvector and forms the same angle with

as the vector to the viewer does (this angle is labéledFigure 4). Light intensity is represented

as point in GML and multiplication of points is component wise. The value&s,éf;, ks, andn are

the surface propertiesf the object at the point of reflection. Section 2.6 describes the mechanism
for specifying these values for an object.

Computing the contribution of lights (th& part of the above equation) requires casting a
shadow rayfrom the intersection point to the light's position. If the ray hits an object that is closer
than the light, then the light does not contribute to the illumination of the intersection point.

Ray tracing is a recursive process. Computing the valug oéquires shooting a ray in the
direction of S and seeing what object (if any) it intersects. To avoid infinite recursion, we limit
the tracing to someepth The depth limit is given as an argument to teader operator (see
Section 2.8).

10

Figure 5: Spotlight

2.5 Lights

GML supports three types of light sourcesrectional lights point lightsandspotlights Directional

lights are assumed to be infinitely far away and have only a direction. Point lights have a position and
an intensity (specified as a color triple), and they emit light uniformly in all directions. Spotlights
emit a cone of light in a given direction. The light cone is specified by three parameters: the light's
direction, the light's cutoff angle, and an attenuation exponent (see Figure 5). Unlike geometric
objects, lights are defined in terms of world coordinates.

dir color light l
creates a directional light source at infinity with directiém and intensitycolor. Both dir

and color are specified as point values.

pos color pointlight l
creates a point-light source at the world coordinate positionwith intensity color. Both
pos andcolor are specified as point values.

pos at color cutoff exp spotlight l
creates a spotlight source at the world coordinate posjtierpointing towards the position
at. The light's color is given byolor. The spotlight’'s cutoff angle is given in degrees by
cutoff and the attenuation exponent is givenday (these are real numbers). The intensity of
the light from a spotlight at a poird@ is determined by the angle between the light’s direction
vector {.e., the vector frompos to at) and the vector fronpos to Q. If the angle is greater
than the cutoff angle, then intensity is zero; otherwise the intensity is given by the equation

_ _ exrp
_ (et pos @ = pos color (1)
|at — pos| |Q — pos|

The light from point lights and spotlights is attenuated by the distance from the light to the surface.

The attenuation equation is:
I

12
ag + ard + asd? (12)

Isurface =

11

Table 1: Texture coordinates for primitives

SPHERE
(0,u,v) (/1 —y?sin(2mu),y, /1 — y? cos(2mu)), wherey = 2v — 1
CUBE
(0,u,v) (u,v,0) front
(1,u,v) (u,v,1) back
(2,u,v) (0,v,u) left
(3,u,v) (1,v,u) right
(4,u,v) (u,1,v) top
(5,u,v) (u,0,v) bottom
CYLINDER
(0,u,v) (sin(27u), v, cos(2mu)) side
(1,u,v) (2u—1,1,2v — 1) top
(2,u,v) (2u—1,0,2v — 1) bottom
CONE
(0, u,v) (vsin(2mu), v, v cos(2mu)) side
(1,u,v) (2u—1,1,2v — 1) base
PLANE
(0,u,v) (u,0,v)

where [is the intensity of the lightd is the distance from the light to the surface, and dhe
are the attenuation coefficients given to tleeder command (see Section 2.8). Note that the
light reflected from surfaces (thie I; term in Equation 10) isiot attenuated; nor is the light from
directional sources.

2.6 Surface functions

GML usesprocedural texturingo describe the surface properties of objects. The basic idea is that
the model provides a function for each object, which maps positions on the object to the surface
properties that determine how the object is illuminated (see Section 2.4).

A surface function takes three arguments: an integer specifying an object’s face and two texture
coordinates. For all objects, except planes, the texture coordinates are restricted to the fange
u,v < 1. The Table 1 specifies how these coordinates map to points in object-space for the various
builtin graphical objects. Note that the arguments tosilieand cos functions are in radians. The
GML implementation is responsible for the inverse mappirgg,; given a point on a solid, compute
the texture coordinates.

A surface function returns a point representing the surface c6lpiand three real numbers: the
diffuse reflection coefficientk(;), the specular reflection coefficieri,, and the Phong exponent
(n). For example, the code in Figure 6 defines a cube with a atieblack and white checked
pattern on each face.

12

0.0 0.0 0.0 point /black
1.0 1.0 1.0 point /white

% 3x3 pattern
[black white black]
[white black white]
[black white black]

] Ntexture
{ v lu [face % bind parameters
{ % toIntCoord : float -> int
3.0 mulf floor /i % i = floor(3.0*r)
i3eqi {2} {i}Iif % make sure i is not 3

} /toIntCoord
texture u toIntCoord apply get % color = texture[u][v]
v tolntCoord apply get

1.0 % kd = 1.0

0.0 % ks = 0.0

1.0 % n = 1.0
} cube

Figure 6: A checked pattern on a cube

2.7 Constructive solid geometry

Solid objects may be combined using boolean set operations to form more complex solids. There
are three composition operations:

obj, objs union objs
forms the uniorbjs of the two solidsobj; andoby,.

obj, objs intersect objs
forms the intersectionbjs of the two solidsobj; andobj,.

obj, objo difference objs
forms the solidobj ; that is the solicbbj; minus the solithby,.

We can determine the intersection of a ray and a compound solid by recursively computing
the intersections of the ray and the solid’s pieces (both entries and exits) and then merging the
information according to the boolean composition operator. Figure 7 illustrates this process for two
objects (this picture is calledRwoth diagran.

When rendering a composite object, the surface properties are determined by the primitive that
defines the surface. If the surfaces of two primitives coincide, then which primitive defines the
surface properties is unspecified.

2.8 Rendering
Therender operator causes the scene to be rendered to a file.

amb lights attn obj depth fov wid ht file render —

13

A e e — . —— >
B - - c———— e e mm e mm e >
Y o B -
A&B -mrmrrmmr e m—— s >
A-B s m— e e -
B-A sorrmmrer s -

Figure 7: Tracing a ray through a compound solid

The render operator renders a scene to afile. It takes nine arguments:

amb the intensity of ambient light (a point).
lights is an array of lights used to illuminate the scene.

attn is a point that represents the light-attenuation coefficients (see Section 2.5), withabef-
ficient corresponding to the component ofittn, a; corresponding to the component, and
a1 corresponding to the component.

obj is the scene to render.

depth is an integer limit on the recursive depth of the ray tracing owing to specular reflection.
l.e., whendepth = 0, we do not recursively compute the contribution from the direction of
reflection § in Figure 4).

fov is the horizontal field of view in degrees (a real number).
wid 1s the width of the rendered image in pixels (an integer).
ht is the height of the rendered image in pixels (an integer).

file is a string specifying output file for the rendered image.

Therender operator is the only GML operator with side effeci®(it modifies the host file
system). A GML program may contain multiplender operators (for animation effects), but the

14

/ +7
view plane /

(0,0,0)

. Cd
eye ponzg .

PR
-
R

Figure 8: View coordinate system

order in which the output files are generated is implementation dependent. The results of evaluating
therender operator during the evaluation of a surface function are undefiredyour program
may choose to exit with an error, or execute the operation, or do something else).

When rendering a scene, the eye position is fixed at, —1) looking down theZ-axis and the
image plane is th& Y -plane (see Figure 8). The horizontal field of viefa() determines the width
of the image in world space.¢., it is 2 tan(0.5fov)), and the height is determined from the aspect
ratio. If the upper-left corner of the image is(at, y, 0) and the width of a pixel i\, then the ray
through thejth pixel in theith row has a direction ofr + (j + 0.5)A,y — (i + 0.5)A, 1).

When the render operation detects that a ray has intersected the surface of an object, it must
compute the texture coordinates at the point of intersection and apply the surface function to them.
Let (face, u,v) be the texture coordinates ardrf be the surface function at the point of intersec-
tion, and let

Eval(surf apply , face,u,v) = (C, kq, ks, n)

Then the surface properties for the illumination equation (see Section 2.4) &g k., andn.

2.9 The output format

The output format is théortable Pixmap(PPM) file formatt The format consists of a ASCII
header followed by the pixel data in binary form. The format of the header is

e The magic number, which are the two characté8.”
e A width, formatted as ASCII characters in decimal.

¢ A height, again in ASCII decimal.

10n Linux systems, thev program can be used to view these files and on MacOS X you can ugahhicsCon-
verter application.

15

e The ASCII text 255,” which is the maximum color-component value.

These items are separated by whitespace (blanks, TABs, CRs, and LFs). After the maximum color
value, there is a single whitespace character (usually a newline), which is followed by the pixel data.
The pixel data is a sequence of three-byte pixel values (red, green, blue) in row-major order. Light
intensity values (represented as GML points) are converted to RGB format by clamping the range
and scaling.

In the header, characters from #"“to the next end-of-line are ignored (comments). This
comment mechanism should be used to include the group’s name immediately following the line
with the magic number. For example, the sample implementation produces the following header:

P6

GML Sample Implementation

256 256
255

Operator summary

The following is an alphabetical listing of the GML operators with brief descriptions. The third
column lists the section where the operator is defined and the fourth column specifies whether the
operator is provided by by us are to be implemented by you.

Name Description Section Provided?
acos arc cosine function 14 Yes
addi integer addition 1.4 Yes
addf real addition 1.4 Yes
apply function application operator 1.3 Yes
asin arc sine function 1.4 Yes
clampf clamp the range of a real number 1.4 Yes
cone a unit cone 2.2 No
cos cosine function 14 Yes
cube a unit cube 2.2 No
cylinder a unit cylinder 2.2 No
difference difference of two solids 2.7 No
divi integer division 1.4 Yes
divf real division 1.4 Yes
eqi integer equality comparison 1.4 Yes
eqf real equality comparison 1.4 Yes
false push thefalsevalue ?? Yes
floor real to integer conversion 1.4 Yes
frac fractional part of real number 1.4 Yes
get get an array element 1.6 Yes
getx getx component of point 15 Yes
gety gety component of point 15 Yes
getz getz component of point 15 Yes
if conditional control operator 1.3 Yes
intersect intersection of two solids 2.7 No
length array length 1.6 Yes

16

Name Description Section Provided?
lessi integer less-than comparison 1.4 Yes
lessf real less-than comparison 1.4 Yes
light defines a directional light source 25 Yes
modi integer remainder 1.4 Yes
muli integer multiplication 1.4 Yes
mulf real multiplication 1.4 Yes
negi integer negation 1.4 Yes
negf real negation 1.4 Yes
plane the X Z-plane 2.2 No
point create a point value 15 Yes
pointlight defines a point-light source 2.5 Yes
real convert an integer to a real number 1.4 Yes
render render a scene to afile 2.8 No
rotatex rotation around theX -axis 2.3 No
rotatey rotation around th& -axis 2.3 No
rotatez rotation around theZ-axis 2.3 No
scale scaling transform 2.3 No
sin sine function 1.4 Yes
sphere a unit sphere 2.2 No
spotlight defines a spotlight source 25 Yes
sgrt square root 1.4 Yes
subi integer subtraction 1.4 Yes
subf real subtraction 1.4 Yes
translate translation transform 2.3 No
true push therue value ?? Yes
union union of two solids 2.7 No
uscale uniform scaling transform 2.3 No

17

