
CMSC 23700 Introduction to Computer Graphics Project 1
Fall 2003 October 14

Ray tracing
Due: Friday, October 31

1 The problem

The second project is to implement a ray tracer. The input to the ray tracer is ascene description
(or model) written in a functional modeling language called GML. The language has a syntax and
execution model that is similar to PostScript (and Forth), but GML islexically scoped and does not
have side effects. Execution of a GML program produces zero, or more,image files, which are in
PPM format (Section 3.7). A detailed description of GML is given in separate handout.

GML has primitives for defining simple geometric objects (e.g., planes, spheres, and cubes) and
lighting sources. The surface properties used to render the objects are specified as functions in GML
itself. In addition to supporting scene description, GML also has arender operator that renders a
scene to an image file. For each pixel in the output image, therender command must compute a
color. Conceptually, this color is computed by tracing the path of the light backwards from the eye
of the viewer, to where it bounced off an object, and ultimately back to the light sources.

We will provide the implementation of GML; it is your task to implement a collection of 16 C
functions that make up the modelling and rendering parts of the ray tracer.

This document is organized as follows. Section 2 gives a quick introduction to the GML mod-
eling language. It is followed by Section 3, which describes your task. Section 4 specifies the
submission requirements and Section 5 provides hints about algorithms and pointers to online re-
sources to get you started.

2 A quick introduction to GML

The “GML Specification” gives a detailed description of the syntax and semantics of the modeling
language. For this handout, we limit ourselves to a quick introduction to GML.

GML is a dynmically-typed, postfix stack-based language. Operations take their arguments
from the stack and deposit their results on the stack. GML supports a small collection of different
value types:booleans, integers, reals, strings, points, closures(i.e., functions),lights, geometrical
objects, andarraysof values.

GML supports binding values to variables. For example, the following code pushes the real
value3.1415 on to the stack and then pops it and binds it to the variablepi .

3.1415 /pi

We can then use this value as in the following code that definestwopi :

2.0 pi mulf /twopi

The syntax “/a ” binds the variablea to a value poped off the stack, while the syntax “a” pushes
the value of the variable.

GML functions are anonymous and are defined by enclosing code in “{ ... }.” For example, a
function that adds one to its argument is defined by

{ 1 addi } /inc

Functions can bind local variables as in the following example that duplicates the top of the stack:

{ /x x x } /dup

This function works by binding the top of the stack to the local variablex and then pushing the value
of x twice. Functions are first-class values, so to apply them we must use theapply operator:

{ dup apply muli } /sq

The other control operator is theif operator that takes a boolean and two functions as arguments.
Here is the definition oflogical or in GML.

{ /a /b a { true } { b } if } /or

GML has no looping construct, but recursion can be used to implement loops. To write and ap-
ply a recursive function requires explicitly tying the recursive knot. For example, the GML version
of the recursive factorial function is as follows:

{ /self /n
n 2 lessi
{ 1 }
{ n 1 subi self self apply n muli }
if

} /fact

Notice that this function follows the convention of passing itself as the top-most argument on the
stack. We can compute the factorial of12 with the expression

12 fact fact apply

3 The task

In this section, we describe the functions that implement the rendering aspects of the GML inter-
preter. We group these functions into five classes: geometric primitives, transformations, lighting,
CSG operators, and the render command. An implementation of the lighting functions is provided
in the sample code, you are responsible for the rest. We have supplied a fileobjects.c that
contains stubs for the functions that you are responsible for.

3.1 GML graphics operations

There are 18 GML graphics operators. The following table summarizes them with cross references
to the section where the corresponding interpreter functions are described:

2

Name Description Section
cone a unit cone 3.3
cube a unit cube 3.3
cylinder a unit cylinder 3.3
difference difference of two solids 3.6
intersect intersection of two solids 3.6
light defines a directional light source 3.5
plane theXZ-plane 3.3
pointlight defines a point-light source 3.5
render render a scene to a file 3.7
rotatex rotation around theX-axis 3.4
rotatey rotation around theY -axis 3.4
rotatez rotation around theZ-axis 3.4
scale scaling transform 3.4
sphere a unit sphere 3.3
spotlight defines a spotlight source 3.5
translate translation transform 3.4
union union of two solids 3.6
uscale uniform scaling transform 3.4

3.2 Interpreter types

The GML interpreter manipulates a number of different value types, which are defined in the file
gml.h .

3.3 Geometric primitives

There are five operations in GML for constructing primitive solids:sphere , cube , cylinder ,
cone , andplane . Each of these operations takes a single GML function as an argument, which
defines the primitive’s surface properties. As part of your implementation, you will need to define
the representation of objects as a Cstruct type:

struct struct_object {
HEADER
...

};

TheHEADERmacro expands to some common member definitions that support memory manage-
ment.

The operations that are used to create the basic primitives are as follows:

Object_t *coneAct (Closure_t * surf)
creates a cone with base radius1 and height1 and with surface properties specified by the
function surf . The apex of the cone is at(0, 0, 0) and the base of the cone is centered at
(0, 1, 0). Formally, the cone is defined byx2 + z2 − y2 ≤ 0 and0 ≤ y ≤ 1.

Object_t *cubeAct (Closure_t * surf)
creates a unit cube with opposite corners(0, 0, 0) and(1, 1, 1). The functionsurf specifies

3

the cube’s surface properties. Formally, the cube is defined by0 ≤ x ≤ 1, 0 ≤ y ≤ 1, and
0 ≤ z ≤ 1.

Object_t *cylinderAct (Closure_t * surf)
creates a cylinder of radius1 and height1 with surface properties specified by the function
surf . The base of the cylinder is centered at(0, 0, 0) and the top is centered at(0, 1, 0) (i.e.,
the axis of the cylinder is theY -axis). Formally, the cylinder is defined byx2 + z2 ≤ 1 and
0 ≤ y ≤ 1.

Object_t *planeAct (Closure_t * surf)
creates a plane object with the equationy = 0 with surface properties specified by the function
surf . Formally, the plane is the half-spacey ≤ 0.

Object_t *sphereAct (Closure_t * surf)
creates a sphere of radius1 centered at the origin with surface properties specified by the
functionsurf . Formally, the sphere is defined byx2 + y2 + z2 ≤ 1.

GML usesprocedural texturingto describe the surface properties of objects. The basic idea is
that the model provides a GML function for each object, which maps positions on the object to the
surface properties that determine how the object is illuminated.

A surface function takes three arguments: an integer specifying an object’s face and two texture
coordinates. For all objects, except planes, the texture coordinates are restricted to the range0 ≤
u, v ≤ 1. The Table 1 specifies how these coordinates map to points in object-space for the various
builtin graphical objects. Note that (as always in GML), the arguments to thesin andcos functions
are in degrees. Your implementation is responsible for the inverse mapping;i.e., given a point on a
solid, compute the texture coordinates.

A surface function returns a point representing the surface color (C), and three real numbers: the
diffuse reflection coefficient (kd), the specular reflection coefficient (ks), and the Phong exponent
(n). We provide the following helper function (defined ingml.h) for applying a surface function
to texture coordinates:

extern void EvalSurfaceFn (
Closure_t *surf, /* surface function */
int face, /* object face */
Real_t u, Real_t v, /* texture coordinates */
Vec3_t color, /* surface color (output) */
Real_t *kd, /* diffuse reflection coeff. (output) */
Real_t *ks, /* specular reflection coeff. (output) */
Real_t *n); /* Phong exponent (output) */

3.4 Transformations

Fixed size objects at the origin are not very interesting, so GML providestransformationoperations
to place objects in world space. These transformations are allaffinetransformations and they have
the property of preserving the straightness of lines and parallelism between lines, but they can alter
the distance between points and the angle between lines. Each transformation operator takes an
object and one or more reals as arguments and returns the transformed object. The following C
functions implement these operations:

4

Table 1: Texture coordinates for primitives

SPHERE
(0, u, v) (

√
1− y2 sin(360u), y,

√
1− y2 cos(360u)), wherey = 2v − 1

CUBE
(0, u, v) (u, v, 0) front
(1, u, v) (u, v, 1) back
(2, u, v) (0, v, u) left
(3, u, v) (1, v, u) right
(4, u, v) (u, 1, v) top
(5, u, v) (u, 0, v) bottom

CYLINDER
(0, u, v) (sin(360u), v, cos(360u)) side
(1, u, v) (2u− 1, 1, 2v − 1) top
(2, u, v) (2u− 1, 0, 2v − 1) bottom

CONE
(0, u, v) (v sin(360u), v, v cos(360u)) side
(1, u, v) (2u− 1, 1, 2v − 1) base

PLANE
(0, u, v) (u, 0, v)

Object_t *rotatexAct (Object_t * obj , Real_t theta)
rotatesobj around theX-axis byθ degrees. Rotation is measured counterclockwise when
looking along theX-axis from the origin towards+∞.

Object_t *rotateyAct (Object_t * obj , Real_t theta)
rotatesobj around theY -axis byθ degrees. Rotation is measured counterclockwise when
looking along theY -axis from the origin towards+∞.

Object_t *rotatezAct (Object_t * obj , Real_t theta)
rotatesobj around theZ-axis byθ degrees. Rotation is measured counterclockwise when
looking along theZ-axis from the origin towards+∞.

Object_t *scaleAct (Object_t * obj , Vec3_t s)
scalesobj by rsx in theX-dimension,rsy in theY -dimension, andrsz in theZ dimension.

Object_t *translateAct (Object_t * obj , Vec3_t t)
translatesobj by the vector(rtx , rty , rtz). I.e., if obj is at position(px, py, pz), thenobj ′ is
at position(px + rtx , py + rty , pz + rtz).

Object_t *uscaleAct (Object_t * obj , Real_t s)
uniformly scalesobj by rs in each dimension. This operation is calledIsotropic scaling.

5

3.5 Lights

GML supports three types of light sources:directional lights, point lightsandspotlights. Directional
lights are assumed to be infinitely far away and have only a direction. Point lights have a position and
an intensity (specified as a color triple), and they emit light uniformly in all directions. Spotlights
emit a cone of light in a given direction. The light cone is specified by three parameters: the light’s
direction, the light’s cutoff angle, and an attenuation exponent. Unlike geometric objects, lights
are defined in terms of world coordinates. The following C functions are used to implement GML
lights:

Light_t *lightAct (Vec3_t dir , Vec3_t color)
creates a directional light source at infinity with directiondir and intensitycolor . Both
dir andcolor are specified as point values.

Light_t *pointlightAct (Vec3_t pos , Vec3_t color)
creates a point-light source at the world coordinate positionpos with intensitycolor . Both
pos andcolor are specified as point values.

Light_t *spotlightAct (Vec3_t pos , Vec3_t at , Vec3_t color ,
Real_t cutoff , Real_t exp)

creates a spotlight source at the world coordinate positionpos pointing towards the position
at . The light’s color is given bycolor . The spotlight’s cutoff angle is given in degrees by
cutoff and the attenuation exponent is given byexp (these are real numbers). The inten-
sity of the light from a spotlight at a pointQ is determined by the angle between the light’s
direction vector (i.e., the vector frompos to at) and the vector frompos to Q. If the angle
is greater than the cutoff angle, then intensity is zero; otherwise the intensity is given by the
equation

I =
(

at − pos
|at − pos|

· Q− pos
|Q− pos|

)exp

color (1)

The light from point lights and spotlights is attenuated by the distance from the light to the surface.
The attenuation equation is:

Isurface =
I

a0 + a1d + a2d2
(2)

whereI is the intensity of the light,d is the distance from the light to the surface, and theai are the
attenuation coefficients passed to therenderAct command (see Section 3.7).

3.6 Constructive solid geometry

Solid objects may be combined using boolean set operations to form more complex solids. There
are three composition operations:

Object_t *differenceAct (Object_t * obj1 , Object_t * obj2)
returns an object that is the objectobj1 minus the solidobj2 .

Object_t *intersectAct (Object_t * obj1 , Object_t * obj2)
returns an object that is the intersection of objectsobj1 andobj2 .

6

Object_t *unionAct (Object_t * obj 1, Object_t * obj)
returns an object that is the union of objectsobj1 andobj2 .

When rendering a composite object, the surface properties are determined by the primitive that
defines the surface. If the surfaces of two primitives coincide, then which primitive defines the
surface properties is unspecified.

3.7 Rendering

Therender operator causes the scene to be rendered to a file.
void renderAct (

Vec3_t amb,
int nLights ,
Light_t ** lights ,
Vec3_t attn ,
Object_t * obj ,
int depth ,
double fov ,
int wid ,
int ht ,
char * file)

TherenderAct function renders a scene to a file. It takes ten arguments:

amb the intensity of ambient light (a point).

nLights is the number of lights in thelights array.

lights is an array ofnLights pointers to lights used to illuminate the scene.

attn is a vector of light-attenuation coefficients.

obj is the scene to render.

depth is an integer limit on the recursive depth of the ray tracing owing to specular reflection.

fov is the horizontal field of view in degrees (a real number).

wid is the width of the rendered image in pixels (an integer).

ht is the height of the rendered image in pixels (an integer).

file is a string specifying output file for the rendered image.

The render operator is the only GML operator with side effects (i.e., it modifies the host file
system).

The output format is thePortable Pixmap(PPM) file format.1 The format consists of a ASCII
header followed by the pixel data in binary form. The format of the header is

• The magic number, which are the two characters “P6.”

1On Linux systems, thexv program can be used to view these files and on MacOS X you can use theGraphicsCon-
verter application. Also, the programppmtojpeg converts PPM files to JPEG format.

7

• A width, formatted as ASCII characters in decimal.

• A height, again in ASCII decimal.

• The ASCII text “255 ,” which is the maximum color-component value.

These items are separated by whitespace (blanks, TABs, CRs, and LFs). After the maximum color
value, there is a single whitespace character (usually a newline), which is followed by the pixel data.
The pixel data is a sequence of three-byte pixel values (red, green, blue) in row-major order. Light
intensity values (represented as GML points) are converted to RGB format by clamping the range
and scaling.

In the header, characters from a “#” to the next end-of-line are ignored (comments). This
comment mechanism should be used to include the group’s name immediately following the line
with the magic number. For example, the sample implementation produces the following header:

P6
GML Sample Implementation
256 256
255

3.8 Memory management

Most of the operations you must implement will allocate new graphical objects. The GML inter-
preter uses a reference counting scheme to keep track of when it is safe to free an object. It is your
responsibility to follow the reference counting protocol for the objects you create.

In addition, you must implement the following function:
void FreeObject (Object_t *obj);

This function will need to determine the kind of object pointed to byobj and then decrement the
reference counts of any other object it refers to. Finally, it should free the memory pointed to by
obj .

4 Requirements

As with Project 0, we will create a module in your course CVS repository on the Computer Sci-
ence CVS server. The module is namedproject-1 and contains the implementation of a GML
interpreter. Your task is to complete this interpreter by adding the implementation of the graph-
ics operations. You should use this module to hold the source for your project. We will collect the
projects at 9pm on Friday October 31st from the repositories, so make sure that you have committed
your final version before then.

The Makefile in the repository builds a statically-linked library calledrtlib.a . To build a
raytracer from a given GML file, one uses the GML compiler (calledgmlc) to translate the GML
file to a C file that can then be compiled and linked with thertlib.a library. For example, assume
we have a GML filescene.gml , then the following commands will build a raytracer for the scene
specified in the file:

% gmlc scene.gml
% cc -o scene.rt scene.c rtlib.a -lm

8

Thegmlccommand is located in/usr/local/bin on the Macs and in/stage/cmsc237/bin
on the Linux machines. Running thescene.rt program will have the effect of running the GML
program inscene.gml .

5 Hints

This section contains some hints that may help you in your implementation. We suggest that you
start by implementing the transformations, spheres, union, and ambient lighting. Once these features
are working, add the specular lighting components (including the recursive ray tracing). Finally, add
the other shapes and CSG operators, testing each as you go.

5.1 Intersection testing

One approach to ray tracing with a modeling language that supports affine transformations (such as
GML) is to transform the rays into object space and do the intersection tests there. This approach
allows the intersection tests to be specialized to the standard objects, which can greatly simplify the
tests. Remember, however, that affine transformations do not preserve lengths — applying an affine
transformation to a unit vector will not yield a unit vector in general.

5.2 Surface acne

One problem that you are likely to encounter is calledsurface acneand results from precision errors.
The problem arises from when the origin of a shadow ray is on the wrong side of its originating
surface, and thus intersets the surface. The visual result is usually a black dot at that pixel. The
sample images include an example that illustrates this problem. One solution is to offset the shadow
ray’s origin by a small amount in the ray’s direction. Another solution is not to test intersection’s
against the originating surface.

5.3 Optimizations

There are opportunities for performance improvements both in the the implementation of the ray
tracing engine.

The resources listed below include information on techniques for improving the efficiency of
ray tracing. Most of these techniques focus on reducing the cost or number of ray/solid intersection
tests. For example, if you precompute a bounding volume for a complex object, then a quick test
against the bounding volume may allow you to avoid a more expensive test against the object. An-
other possible optimization is to have a version of your intersection testing code that is specialized
for shadow rays.

5.4 Resources

Here are a few pointers to on-line sources of information about graphical algorithms and ray tracing.

http://www.classes.cs.uchicago.edu/current/23700/project-1.html
is a page of example GML specifications with the expected images.

9

http://www.classes.cs.uchicago.edu/current/23700/gml-spec.pdf
The GML specification.

http://www.realtimerendering.com/int/
is the3D Object Intersectionpage with pointers to papers and code describing various inter-
section algorithms.

http://www.acm.org/tog/resources/RTNews/html/
is the home page of theRay Tracing News, which is an online journal about ray tracing
techniques.

http://www.cs.utah.edu/ bes/papers/fastRT/
is a paper by Brian Smits on efficiency issues in implementing ray tracers.

10

