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Terrain rendering
Due: Thursday, December 11

1 The problem

For this project your task is to implement a simulator for the next generation of off-road vehicles:
thesports utility hovercraft(SUH). This program will read in terrain height and texture information
and render the view from a simulated vehicle. The terrain height data is given as a square array of
16-bit height samples, which define a grid. The texture data defines one texel for each grid cell. The
input data also includes additional terrain features that you may choose to render for extra credit
(see Section 7.1).

1.1 The controls

Navigation is controlled using the arrow keys. In addition, your implementation should support a
wireframe view and dynamically changing the level of detail.

UP ARROW accelerate
DOWN ARROW brake
LEFT ARROW turn left

RIGHT ARROW turn right
w toggle wireframe mode
+ increase level of detail (by

√
2)

- decrease level of detail (by
√

2)
q quit the viewer

For the navigation controls, you will need to sample the state of the arrow keys (instead of just
reacting to keyboard events). GLUT provides a function for registering a callback that gets called
when a special key is released:

void glutSpecialUpFunc (void (*func)(unsigned int key, int x, int y));

Thus you will need two callbacks to keep track of the state of the arrow keys.1 Since holding down
a key generated a repeated sequence of key events, which take time to service, you can disable key
repeats using the following GLUT call:

glutIgnoreKeyRepeat (1);

1Note that you should guarantee that any transient keystoke gets sampled at least once in the physics model.



1.2 The physics model

We simulate the SUH with a very simple physics model based on discreet sampling. The state of
the vehicle at a stepi is given as a triple(pi, vi, hi), wherepi is the vehicle’s position in theX −Z
plane,2 vi is its velocity, andhi is its heading in degrees (with north being180 and south being0).
We recompute the state of the vehicle one hundred times per second (i.e., every 10 milliseconds).
Given the vehicle’s state at stepi, we can compute its state at stepi + 1 as follows:

v = vi − f0 − f1vi − f2(v2
i ) + (g · s(pi, hi))

vi+1 =


max(0, v + a) if accelerating
max(0, v − b) if breaking
v otherwise

hi+1 =


hi + t

(v2
i+1)+l

if turning left

hi − t
(v2

i+1)+l
if turning right

hi otherwise

pi+1 = pi + vi+1〈 sin(hi+1), cos(hi+1)〉

This computation depends on a number of factors, which are defined as follows:

a = 5× 10−3 acceleration factor
b = 6× 10−3 braking factor

f0 = 6× 10−5 friction coefficient
f1 = 2× 10−4 friction coefficient
f2 = 4× 10−4 friction coefficient
g = 〈0,−0.1, 0〉 gravity
l = 0.3 turn limit
t = 0.2 turning factor

s(p, h) unit slope vector with directionh at positionp

If the vehicle is traveling at velocityvi, we first compute a new velocityv that represents the effects
of friction and gravity. We then apply acceleration and/or breaking to computevi+1 (note that we
do not let the velocity fall below zero). We use the new velocity in computing the new heading.
Lastly, we compute the new position.

Computing the slope functions(p, h) can be done in one of a couple ways.

• Project a 2D unit vectord in the directionh; i.e., d = 〈 sin(h), cos(h)〉 and letp′ = p + d.
Then letH(p) be the height at positionp. The unnormalized slope vector is〈dx,H(p′) −
H(p),dz)〉. Divide this vector by its length to gets(p, h).

• The other approach is to letn be the normal vector of the triangle containingp and letd =
〈 sin(h), y, cos(h)〉, for some unknowny. Then solven · d = 0 for y and sets(p, h) = d

||d|| .

These methods will produce different results, but either is sufficient for the simulation.

Your simulator should take care that the vehicle does not go off the edge of the map. If that
happens, you could teleport it back to the center of the map, or bounce it off the edge.

2Note that the positionp of the vehicle is given inX-Z coordinates; the altitude of the vehicle (theY coordinate)
will always be 2 meters above the terrain at the vehicle’s position.
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2 Heightfields

Heightfields are a special case of mesh data structure, in which only one number, the height, is
stored per vertex. The other two coordinates are implicit in the grid position. Ifsh is the horizontal
scale,sv the vertical scale, andH a height field, then the 3D coordinate of the vertex in rowi
and columnj is 〈shj, svHi,j , shi〉 (assuming that the upper-left corner of the heightfield hasX
andY coordinates of0). By convention, the top of the heightfield is north; thus, assuming that a
right-handed coordinate system, the positive X-axis points east, the positive Y axis points up, and
the positive Z-axis points south. The heightfield is typically represented as a linear array of height
samples, with thei, j element at indexiw + j, wherew is the width of the heightfield. Because
of their regular structure, heightfields are trivial to triangulate; for example, Figure 1 gives two
possible triangulations of a5 × 5 grid. The ROAM algorithm that we use in this project produces
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Figure 1: Heightfield triangulations

triangulations that follow the pattern on the left of Figure 1.

3 ROAM

The goal of a terrain rendering algorithm is to render a triangle mesh that models a given heightfield.
The naive approach to draw the complete triangle mesh requires rendering very large numbers of
triangles (e.g., a1024× 1024 heightfield has 2 million triangles).

The basic idea of terrain rendering is that you are given a squareheightfieldof (2n+1)×(2n+1)
points that defines a triangle mesh. In this project, the points are spaced one meter apart and the
height values are 16-bit integers in units of0.1 meters. Rendered as a triangle mesh, the heightfield
requires2(2n)2 = 22n+1 triangles. Thus a one-kilometer square map has 2 million triangles. Since
rendering such large numbers of triangles in real-time is impractical, we will use acontinuous level-
of-detail(CLOD) scheme to reduce the number of triangles rendered per frame.

Many techniques have been developed for managing level-of-detail when rendering terrain. For
this project, we will use thesplit-onlyvariant of the ROAM algorithm [DWS+97].

The ROAM algorithm is organized around a dynamic representation of triangle meshes called
triangle binary trees. Figure 2 gives an example of a tree and Figure 3 shows the corresponding
levels of triangulation. In the split-only version of this algorithm, we compute a new tesselation
of the heightfield each frame by starting with the two triangles that cover the whole heightfield and
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Figure 2: Binary triangle tree

then refining the mesh. Each triangle in the binary triangle tree has three neighbors (except for those
triangles on the border) as is show in Figure 4.

As can be seen from these figures, constructing a binary triangle tree can be done as a recursive
splitting procedure. The trick is that we only want to split a triangle if the resulting mesh provides
a visibly more accurate approximation of the height field. Thus, we modify the recursive splitting
procedure to split the triangle with the highest priority, where priorities are a measure of the visual
effect of not splitting. We use a limit of the number of triangles in the mesh to control the amount
of rendering work we do. Thus, the psuedocode for the tesselation phase is

initialize the mesh to top two triangles
while ( size of mesh < limit ) {

split highest priority triangle
}

Splitting a triangle requires splitting the triangle’s base neighbor (otherwise a T-junction results),
but it may also presplitting the neighbor, when it is at a higher-level in the binary triangle tree.
Figure 5 shows this situation.

4 Input format

A terrain data set is represented as a directory containing the following files:

• map — this file contains information about the terrain data set, such as scale and feature
locations.

• hf.pgm – this file contains the height-field data.

• color.ppm

We will provide code for loading the input data.
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Level 0 Level 1

Level 2 Level 3

Figure 3: Binary triangle tree levels

4.1 Map file

The map file contains summary information about the terrain, plus the names and positions of the
terrain objects (i.e., geysers).

4.2 Height-field data

The heightfield data is stored as aPortable Grey Map(PGM) file with 16-bit samples. Its dimension
will be 2N + 1 samples on a side (i.e., 2N × 2N grid cells). The horizontal scale (i.e., distance
between grid points) and vertical scale are given as part of the map file.

4.3 Color

The color of the terrain is specified as a separate pixmap image, with one pixel per heightfield grid
square (e.g., if you have a513×513 heightfield, then the corresponding color file will be512×512).

4.4 Plant descriptions

The plant description files are given as L-Systems. The sample code includes the L-system loader
and evaluator from Project 2, plus a simple scene-graph parser. You may use our parser or your own
from Project 2. For this project you do not need to render plant shadows.

5 Hints

The key to this assignment is getting the data structures right. You will need a data structure to
represent the trimesh; the triangles in this mesh are what your split operation will work on. You will
also need a variance tree that maps bintree nodes to their variance. You should compute this tree at
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Figure 4: Triangle neighbors

heightfield load time. Since the variance of a leaf (i.e., a triangle at the finest level of detail) is zero,
your variance tree does not need nodes for the leaves. For a heightfield of dimension2N + 1, there
are22N+1 leaf triangles, which means22N+1 − 1 nodes in the variance tree. Since the variance tree
is a complete binary tree, you can use a linear representation of it.

6 Requirements

Your final version must be checked into your CVS repository byNoon on Thursday, December 11.
You will be expected to demo your project in the MacLab on the 11th between 1:30 and 3:30pm.

The car’s initial position should be in the center of the map facing east. The initial velocity
should be zero and your initial triangle budget should be 10000.

7 Extra credit

If you have the time and ambition, there are a number of additional features that you may want to
implement.

7.1 Geysers

Driving around an empty wasteland is boring, so we populate the terrain with geysers. Information
about the position and size of geyser’s is stored in themapfile. Geysers are represented by particle
systems, which will be discussed in another handout.
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Figure 5: Forcing splits

7.2 Detail textures

Close up, the texture map we are using only has one texel per grid square. One approach to making
the image more realistic is to blend in adetail texture on triangles that are close to the viewer. A
detail texture can be something as simple as Perlin noise or it can be terrain features, such as rocks,
grass, ...

7.3 Random terrain generation

There are many algorithms for generating random terrains. Implement one of them to produce the
world.

7.4 Shadows

You can compute shadow volumes much the same way that you did in Project 2. Assuming that the
position of the sun does not vary over the course of the simulation, you can precompute the shadow
volumes at load time. Note that you should cull shadow volumes by the view frustum. You also
need to mark those triangles that have silhouette edges with a high priority so that your shadow
volumes are closed.

7.5 Full ROAM implementation

The full ROAM algorithm exploits frame-to-frame coherence by incrementally recomputing the
tessellation from the previous frame. It does this by maintaining a pair of priority queues: one
with triangles to split and one with diamonds (triangle pairs that share a common base) that can be
merged.

7



8 Document history

Dec. 4 Sped up physics model and added initial conditions to Requirements section.

Dec. 1 Fixed equations for computing slope (noi + 1 subscript onh).

Nov. 20 Original version.
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