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Roadmap

• Parsing:
– Accepting & analyzing
– Combining top-down & bottom-up constraints

• Efficiency
– Earley parsers

• Probabilistic CFGs
– Handling ambiguity – more likely analyses
– Adding probabilities

• Grammar
• Parsing: probabilistic CYK
• Learning probabilities: Treebanks & Inside-Outside
• Issues with probabilities



Representation:
Context-free Grammars

• CFGs: 4-tuple
– A set of terminal symbols: Σ
– A set of non-terminal symbols: N
– A set of productions P: of the form A -> α

• Where A is a non-terminal and α in (Σ U N)*

– A designated start symbol S

• L = W|w in Σ* and S=>*w
– Where S=>*w means S derives w by some seq



Representation:
Context-free Grammars

• Partial example
– Σ: the, cat, dog, bit, bites, man
– N: NP, VP, AdjP, Nominal
– P: S-> NP VP; NP -> Det Nom; Nom-> N Nom|N
– S S

NP                     VP

Det Nom          V         NP

N                       Det Nom

N

The            dog            bit        the        man



Parsing Goals

• Accepting:
– Legal string in language?

• Formally: rigid
• Practically: degrees of acceptability

• Analysis
– What structure produced the string?

• Produce one (or all) parse trees for the string



Parsing Search Strategies

• Top-down constraints:
– All analyses must start with start symbol: S
– Successively expand non-terminals with RHS
– Must match surface string

• Bottom-up constraints:
– Analyses start from surface string
– Identify POS 
– Match substring of ply with RHS to LHS
– Must ultimately reach S



Integrating Strategies

• Left-corner parsing:
– Top-down parsing with bottom-up constraints
– Begin at start symbol
– Apply depth-first search strategy

• Expand leftmost non-terminal
• Parser can not consider rule if current input can 

not be first word on left edge of some derivation
• Tabulate all left-corners for a non-terminal



Issues

• Left recursion
– If the first non-terminal of RHS is recursive ->

• Infinite path to terminal node
• Could rewrite

• Ambiguity: pervasive (costly)
– Lexical (POS) & structural

• Attachment, coordination, np bracketing

• Repeated subtree parsing
– Duplicate subtrees with other failures



Earley Parsing

• Avoid repeated work/recursion problem
– Dynamic programming

• Store partial parses in “chart”
– Compactly encodes ambiguity

• O(N^3)

• Chart entries:
– Subtree for a single grammar rule
– Progress in completing subtree
– Position of subtree wrt input



Earley Algorithm

• Uses dynamic programming to do parallel 
top-down search in  (worst case) O(N3) time 

• First, left-to-right pass fills out a chart with 
N+1 states
– Think of chart entries as sitting between words in 

the input string keeping track of states of the 
parse at these positions

– For each word position, chart contains set of 
states representing all partial parse trees 
generated to date. E.g. chart[0] contains all 
partial parse trees generated at the beginning of 
the sentence



Chart Entries 

• predicted constituents

• in-progress constituents

• completed constituents

Represent three types of constituents:



Progress in parse represented 
by Dotted Rules

• Position of  • indicates type of constituent
• 0 Book 1 that 2 flight 3

• S → • VP, [0,0] (predicted)

• NP → Det • Nom, [1,2] (in progress)

• VP →V NP •, [0,3] (completed)

• [x,y] tells us what portion of the input is spanned 
so far by this rule

• Each State s i:
<dotted rule>, [<back pointer>,<current 
position>]



S → • VP, [0,0] 
– First 0 means S constituent begins at the start of 

input
– Second 0 means the dot here too
– So, this is a top-down prediction

NP → Det • Nom, [1,2]
– the NP begins at position 1
– the dot is at position 2
– so, Det has been successfully parsed
– Nom predicted next

0 Book 1 that 2 flight 3



0 Book 1 that 2 flight 3
(continued)

VP → V NP •, [0,3]
– Successful VP parse of entire input



Successful Parse

• Final answer found by looking at last entry 
in chart

• If entry resembles S → α • [nil,N] then 
input parsed successfully

• Chart will also contain record of all 
possible parses of input string, given the 
grammar



Parsing Procedure for the 
Earley Algorithm

• Move through each set of states in order, 
applying one of three operators to each 
state:
– predictor: add predictions to the chart
– scanner: read input and add corresponding state 

to chart
– completer: move dot to right when new 

constituent found

• Results (new states) added to current or next 
set of states in chart

• No backtracking and no states removed: 
keep complete history of parse



States and State Sets

• Dotted Rule s i represented as 
<dotted rule>, [<back pointer>, <current 
position>]

• State Set S j to be a collection of states si with 
the same <current position>.



Earley Algorithm (simpler!)

1. Add Start → · S, [0,0] to state set 0
Let i=1

2. Predict all states you can, adding new predictions to 
state set 0

3. Scan input word i—add all matched states to state set Si.
Add all new states produced by Complete to state set Si
Add all new states produced by Predict to state set Si
Let i = i + 1
Unless i=n, repeat step 3.

4. At the end, see if state set n contains Start → S · , [nil,n]



3 Main Sub-Routines of 
Earley Algorithm

• Predictor: Adds predictions into the chart.
• Completer: Moves the dot to the right 

when new constituents are found.
• Scanner: Reads the input words and enters 

states representing those words into the 
chart.



Predictor

• Intuition:  create new state for top-down 
prediction of new phrase.

• Applied when non part-of-speech non-
terminals are to the right of a dot: S → • VP 
[0,0]

• Adds new states to current chart
– One new state for each expansion of the non-

terminal in the grammar
VP → • V [0,0]
VP → • V NP [0,0]

• Formally:
Sj: A → α · B β, [i,j]
Sj: B → · γ, [j,j]



Scanner

• Intuition: Create new states for rules matching 
part of speech of next word.

• Applicable when part of speech is to the right of 
a dot: VP → • V NP [0,0] ‘Book…’

• Looks at current word in input
• If match, adds state(s) to next chart

VP → V • NP [0,1]
• Formally:

Sj: A → α · B β, [i,j]
Sj+1: A → α B · β, [i,j+1]



Completer
• Intuition:  parser has finished a new phrase, 

so must find and advance states all that 
were waiting for this

• Applied when dot has reached right end of 
rule
NP → Det Nom • [1,3]

• Find all states w/dot at 1 and expecting an 
NP: VP → V • NP [0,1]

• Adds new (completed) state(s) to current 
chart : VP → V NP • [0,3]

• Formally: Sk: B → δ · , [j,k]
Sk: A → α B · β, [i,k],
where: Sj: A → α · B β, [i,j]. 



Example: State Set S0 for 
Parsing “Book that flight” 

using Grammar G0



Example: State Set S1 for 
Parsing “Book that flight”

VP -> Verb.                                      [0,1]              Scanner
S -> VP.                                           [0,1]           Completer
VP -> Verb. NP                                [0,1]               Scanner
NP -> .Det Nom                               [1,1]              Predictor
NP -> .Proper-Noun                        [1,1]              Predictor



Prediction of Next Rule

• When VP → V • is itself processed by 
the Completer, S → VP • is added to 
Chart[1] since VP is a left corner of S

• Last 2 rules in Chart[1] are added by 
Predictor when VP → V • NP is 
processed

• And so on….



Last Two States
Chart[2]

NP->Det. Nominal                               [1,2]     Scanner
Nom -> .Noun                                      [2,2]    Predictor
Nom -> .Noun Nom                              [2,2]   Predictor

Chart[3]
Nom -> Noun.                                      [2,3]     Scanner
Nom -> Noun. Nom                             [2,3]      Scanner
NP -> Det Nom.                                   [1,3]   Completer
VP -> Verb NP.                                    [0,3]   Completer
S -> VP.                                               [0,3]   Completer
Nom -> .Noun                                      [3,3]     Predictor
Nom -> .Noun Nom                             [3,3]     Predictor



How do we retrieve the 
parses at the end?

• Augment the Completer to add pointers to 
prior states it advances as a field in the 
current state
– i.e. what state did we advance here?
– Read the pointers back from the final state



Probabilistic CFGs



Handling Syntactic Ambiguity

• Natural language syntax 
• Varied, has DEGREES of acceptability 
• Ambiguous

• Probability: framework for preferences
– Augment original context-free rules: PCFG
– Add probabilities to transitions

NP -> N
NP -> Det N
NP -> Det Adj N
NP -> NP PP

0.2

0.65

0.10

VP -> V
VP -> V NP
VP -> V NP PP

0.45

0.45

0.10

S -> NP VP
S -> S conj S

0.85

0.15

0.05

PP -> P NP
1.0



PCFGs

• Learning probabilities
– Strategy 1: Write (manual) CFG, 

• Use treebank (collection of parse trees) to find 
probabilities

• Parsing with PCFGs
– Rank parse trees based on probability
– Provides graceful degradation 

• Can get some parse even for unusual constructions - low 
value



Parse Ambiguity

• Two parse trees

S

NP VP

N         V     NP    PP

Det N   P   NP
Det N

I       saw the  man with the duck

S

NP VP

N        V    NP

NP  PP 
Det N  P  NP

Det N

I   saw the  man with the duck



Parse Probabilities

– T(ree),S(entence),n(ode),R(ule)
– T1 = 0.85*0.2*0.1*0.65*1*0.65 = 0.007
– T2 = 0.85*0.2*0.45*0.05*0.65*1*0.65 = 0.003

• Select T1
• Best systems achieve 92-93% accuracy

∏
∈

=
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Probabilistic CYK Parsing

• Augmentation of Cocke-Younger-Kasami
– Bottom-up parsing

• Inputs
– PCFG in CNF G={N,Σ,P,S,D}, N have indices
– N words w1…wn

• DS:Dynamic programming array: π[i,j,a]
• Holding max prob index a spanning i,j

• Output:  Parse π[1,n,1] with S and w1..wn



Probabilistic CYK Parsing

• Base case: Input strings of length 1
– In CNF, prob must be from A=>wi

• Recursive case: For strings > 1, A=>*wij iff
there is rule A->BC and some k, 1<=k<j st
B derives the first k symbols and C the last 
j-k.  Since len < |wij|, probability in table. 
Multiply subparts; compute max over all 
subparts. 



Inside-Outside Algorithm

• EM approach 
– Similar to Forward-Backward training of HMM

• Estimate number of times production used
– Base on sentence parses
– Issue: Ambiguity

• Distribute across rule possibilities

– Iterate to convergence



Issues with PCFGs

• Non-local dependencies
– Rules are context-free; language isn’t

• Example: 
– Subject vs non-subject NPs

• Subject: 90% pronouns (SWB)

• NP-> Pron vs NP-> Det Nom: doesn’t know if subj

• Lexical context:
– Verb subcategorization: 

• Send NP PP  vs Saw NP PP

– One approach: lexicalization


