
Roadmap

• Probabilistic CFGs
– Handling ambiguity – more likely analyses
– Adding probabilities

• Grammar
• Parsing: probabilistic CYK
• Learning probabilities: Treebanks & Inside-Outside
• Issues with probabilities

– Resolving issues
• Lexicalized grammars

– Independence assumptions

– Alternative grammar formalisms
• Dependency Grammar

Representation:
Probabilistic Context-free

Grammars
• PCFGs: 5-tuple

– A set of terminal symbols: Σ
– A set of non-terminal symbols: N
– A set of productions P: of the form A -> α

• Where A is a non-terminal and α in (Σ U N)*

– A designated start symbol S
– A function assigning probabilities to rules: D

• L = W|w in Σ* and S=>*w
– Where S=>*w means S derives w by some seq

Parse Ambiguity

• Two parse trees

S

NP VP

N V NP PP

Det N P NP
Det N

I saw the man with the duck

S

NP VP

N V NP

NP PP
Det N P NP

Det N

I saw the man with the duck

Small Probabilistic Grammar

NP -> N
NP -> Det N
NP -> Det Adj N
NP -> NP PP

0.65

0.10

VP -> V
VP -> V NP
VP -> V NP PP

0.45

0.45

0.10

S -> NP VP
S -> S conj S

0.85

0.15

0.05

1.0
PP -> P NP

Parse Probabilities

– T(ree),S(entence),n(ode),R(ule)
– T1 = 0.85*0.2*0.1*0.65*1*0.65 = 0.007
– T2 = 0.85*0.2*0.45*0.05*0.65*1*0.65 = 0.003

• Select T1
• Best systems achieve 92-93% accuracy

∏
∈

=
Tn

nrpSTP))((),(

Probabilistic CYK Parsing

• Augmentation of Cocke-Younger-Kasami
– Bottom-up parsing

• Inputs
– PCFG in CNF G={N,Σ,P,S,D}, N have indices
– N words w1…wn

• DS:Dynamic programming array: π[i,j,a]
• Holding max prob index a spanning i,j

• Output: Parse π[1,n,1] with S and w1..wn

Probabilistic CYK Parsing

• Base case: Input strings of length 1
– In CNF, prob must be from A=>wi

• Recursive case: For strings > 1, A=>*wij iff
there is rule A->BC and some k, 1<=k<j st
B derives the first k symbols and C the last
j-k. Since len < |wij|, probability in table.
Multiply subparts; compute max over all
subparts.

Inside-Outside Algorithm

• EM approach
– Similar to Forward-Backward training of HMM

• Estimate number of times production used
– Base on sentence parses
– Issue: Ambiguity

• Distribute across rule possibilities

– Iterate to convergence

Issues with PCFGs

• Non-local dependencies
– Rules are context-free; language isn’t

• Example:
– Subject vs non-subject NPs

• Subject: 90% pronouns (SWB)

• NP-> Pron vs NP-> Det Nom: doesn’t know if subj

• Lexical context:
– Verb subcategorization:

• Send NP PP vs Saw NP PP

– One approach: lexicalization

Probabilistic Lexicalized CFGs

• Key notion: “head”
– Each non-terminal assoc w/lexical head

• E.g. verb with verb phrase, noun with noun phrase

– Each rule must identify RHS element as head
• Heads propagate up tree

– Conceptually like adding 1 rule per head value

• VP(dumped) -> VBD(dumped)NP(sacks)PP(into)
• VP(dumped) -> VBD(dumped)NP(cats)PP(into)

PLCFG with head features

S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

DT(a) NN(bin)

Workers dumped sacks into a bin

PLCFGs

• Issue: Too many rules
– No way to find corpus with enough examples

• (Partial) Solution: Independence assumed
– Condition rule on

• Category of LHS, head

– Condition head on
• Category of LHS and parent’s head

∏
∈

=
Tn

nmhnnhpnhnnrpSTP)))((,|)((*))(.|)((),(

Disambiguation Example

S(dumped)

NP(workers) VP(dumped)

NNS(workers) VBD(dumped) NP(sacks) PP(into)

NNS(sacks) P(into) NP(bin)

Workers dumped sacks into a bin

NP(sacks)

Dt(a) NN(bin)

Disambiguation Example II

67.09/6

))((

))((

),|(

==

→
→=

→

∑β
βdumpedVPC

VBDNPPdumpedVPC

dumpedVPVBDNPPPVPP

09/0

))((

))((

),|(

==

→
→=

→

∑β
βdumpedVPC

NPVBDdumpedVPC

dumpedVPVBDNPVPp

22.09/2

...)...)((

)..)(...)((

),|(

==

→
→= ∑β

PPdumpedXC

inPPdumpedXC

dumpedPPinp

0/0

...)...)((

)...)(...)((

),|(

=

→
→= ∑β

PPsacksXC

inPPsacksXC

sacksPPinp

Evaluation

• Compare to “Gold Standard” manual parse
– Correct if constituent has same start, end, label

• Three measures:
– Labeled Recall:

• # correct constituents in candidate parse of s
--

correct constituents in treebank parse of c
– Labeled Precision:

• # correct constituents in candidate parse of s
--

total constituents in candidate parse of c

– Cross-brackets: (A (B C)) vs ((A B) C)
• Standard: 90%,90%,1%

Dependency Grammars

• Pure lexical dependency
– Relate words based on binary syntactic relns
– No constituency, phrase structure rules

• Why?
– Better for languages with flexible word orders
– Abstracts away from surface form/order

• Root node + word nodes
– Link with dependency relations – fixed set

• E.g. subj, obj, dat, loc, attr, mode, comp,…

Dependency Grammar Example

<Root>

Dumped

Workers Sacks Into

bin

a

Main:

objsubj
loc

pcomp

det

