Roadmap

- Probabilistic CFGs
 - Handling ambiguity more likely analyses
 - Adding probabilities
 - Grammar
 - Parsing: probabilistic CYK
 - Learning probabilities: Treebanks & Inside-Outside
 - Issues with probabilities
 - Resolving issues
 - Lexicalized grammars
 - Independence assumptions
 - Alternative grammar formalisms
 - Dependency Grammar

Representation: Probabilistic Context-free Grammars

- PCFGs: 5-tuple
 - A set of terminal symbols: $\boldsymbol{\Sigma}$
 - A set of non-terminal symbols: N
 - A set of productions P: of the form A -> α
 - Where A is a non-terminal and α in (S U N)*
 - A designated start symbol S
 - A function assigning probabilities to rules: D
- L = W|w in Σ^* and $S = >^*w$

- Where S=>*w means S derives w by some seq

Parse Ambiguity

• Two parse trees

Small Probabilistic Grammar

 $PP^{1.0} P NP \qquad \begin{array}{l} NP \to N \\ NP \to Det N \end{array} \qquad \begin{array}{l} VP^{0.45} V \\ VP \to V \\ VP \to V NP \end{array} \qquad \begin{array}{l} S^{0.85} P VP \\ S^{0.15} S conj S \end{array}$ $NP \xrightarrow{0.10}{->} Det Adj N VP \xrightarrow{0.10}{->} V NP PP$ $NP \xrightarrow{0.05}{->} NP PP$

Parse Probabilities

$$P(T,S) = \prod_{n \in T} p(r(n))$$

-T(ree),S(entence),n(ode),R(ule)

- -T1 = 0.85*0.2*0.1*0.65*1*0.65 = 0.007
- -T2 = 0.85*0.2*0.45*0.05*0.65*1*0.65 = 0.003
- Select T1
- Best systems achieve 92-93% accuracy

Probabilistic CYK Parsing

- Augmentation of Cocke-Younger-Kasami
 - Bottom-up parsing
- Inputs
 - PCFG in CNF G={N, Σ , P, S, D}, N have indices
 - N words w1…wn
- DS:Dynamic programming array: π[i,j,a]
 - Holding max prob index a spanning i,j
- Output: Parse $\pi[1,n,1]$ with S and w1..wn

Probabilistic CYK Parsing

- Base case: Input strings of length 1

 In CNF, prob must be from A=>wi
- Recursive case: For strings > 1, A=>*wij iff there is rule A->BC and some k, 1<=k<j st B derives the first k symbols and C the last j-k. Since len < |wij|, probability in table. Multiply subparts; compute max over all subparts.

Inside-Outside Algorithm

- EM approach
 - Similar to Forward-Backward training of HMM
- Estimate number of times production used
 - Base on sentence parses
 - Issue: Ambiguity
 - Distribute across rule possibilities
 - Iterate to convergence

Issues with PCFGs

- Non-local dependencies
 - Rules are context-free; language isn't
- Example:
 - Subject vs non-subject NPs
 - Subject: 90% pronouns (SWB)
 - NP-> Pron vs NP-> Det Nom: doesn't know if subj
- Lexical context:
 - Verb subcategorization:
 - Send NP PP vs Saw NP PP
 - One approach: lexicalization

Probabilistic Lexicalized CFGs

- Key notion: "head"
 - Each non-terminal assoc w/lexical head
 - E.g. verb with verb phrase, noun with noun phrase
 - Each rule must identify RHS element as head
 - Heads propagate up tree
 - Conceptually like adding 1 rule per head value
 - VP(dumped) -> VBD(dumped)NP(sacks)PP(into)
 - VP(dumped) -> VBD(dumped)NP(cats)PP(into)

PLCFG with head features

PLCFGs

- Issue: Too many rules
 - No way to find corpus with enough examples
- (Partial) Solution: Independence assumed
 - Condition rule on
 - Category of LHS, head
 - Condition head on
 - Category of LHS and parent's head

$$P(T,S) = \prod_{n \in T} p(r(n) \mid n.h(n)) * p(h(n) \mid n,h(m(n)))$$

Disambiguation Example

Disambiguation Example II

$$P(VP \rightarrow VBDNPPP | VP, dumped)$$

=
$$\frac{C(VP(dumped) \rightarrow VBDNPP)}{\sum_{\beta} C(VP(dumped) \rightarrow \beta)}$$

=
$$6/9 = 0.67$$

$$p(VP \rightarrow VBDNP | VP, dumped)$$

=
$$\frac{C(VP(dumped) \rightarrow VBDNP)}{\sum_{\beta} C(VP(dumped) \rightarrow \beta)}$$

=
$$0/9 = 0$$

$$p(in | PP, dumped) = \frac{C(X(dumped) \rightarrow ...PP(in)..)}{\sum_{\beta} C(X(dumped) \rightarrow ...PP...)} = 2/9 = 0.22$$

$$p(in | PP, sacks)$$

$$= \frac{C(X(sacks) \rightarrow ...PP(in)...)}{\sum_{\beta} C(X(sacks) \rightarrow ...PP...)}$$

$$= 0/0$$

Evaluation

- Compare to "Gold Standard" manual parse
 - Correct if constituent has same start, end, label
- Three measures:
 - Labeled Recall:
 - # correct constituents in candidate parse of s

correct constituents in treebank parse of c

- Labeled Precision:
 - # correct constituents in candidate parse of s

total constituents in candidate parse of c

- Cross-brackets: (A (B C)) vs ((A B) C)
- Standard: 90%,90%,1%

Dependency Grammars

- Pure lexical dependency
 - Relate words based on binary syntactic relns
 - No constituency, phrase structure rules
- Why?
 - Better for languages with flexible word orders
 - Abstracts away from surface form/order
- Root node + word nodes
 - Link with dependency relations fixed set
 - E.g. subj, obj, dat, loc, attr, mode, comp,...

Dependency Grammar Example

