
Semantic Analysis

CMSC 35100
Natural Language Processing

May 8, 2003

Roadmap

• Semantic Analysis
– Motivation:

• Understanding commands

– Approach I: Syntax-driven semantic analysis
• Augment productions with semantic component

– Lambda calculus formulation

– Approach II: Semantic Grammar
• Augment with domain-specific semantics

– Approach III: Information Extraction
• Template-based semantics

Understanding Commands

• “What do I have on Thursday?”
• Parse:

S

Q-Wh-obj

Whwd Aux NP VP/NP

Pron V NP/NP Temporal

P NP

N

What do I have t on Thursday

Understanding Commands
• Parser:

– Yes, it’s a sentence & here’s the structure

• System: Great! But what do I do?

S

Q-Wh-obj

Whwd Aux NP VP/NP

Pron V NP/NP Temporal

P NP

N

What do I have t on Thursday

Date: Thursday

Date: Thursday

Date: Thursday

Cal
Owner:
User

Date: Thursday

Cal
Owner:
User

Action: Check calendar
Cal Owner: User
Date: Thursday

Syntax-driven Semantic Analysis

• Key: Principle of Compositionality
– Meaning of sentence from meanings of parts

• E.g. groupings and relations from syntax

• Question: Integration?
• Solution 1: Pipeline

– Feed parse tree and sentence to semantic unit
– Sub-Q: Ambiguity:

• Approach: Keep all analyses, later stages will select

Simple Example

• AyCaramba serves meat.
),(),(),(MeateServedAyCarambaeServerServingeIsae ∧∧∃

S

NP VP

Prop-N V NP

N

AyCaramba serves meat.

Rule-to-Rule

• Issue:
– Need detailed information about sentence,

parse tree
• Infinitely many sentences & parse trees

• Solution:
– Tie semantics to finite components of grammar

• E.g. rules & lexicon

– Augment grammar rules with semantic info
• Aka “attachments”

– Specify how RHS elements compose to LHS

Semantic Attachments

• Basic structure:
– A-> a1….an {f(aj.sem,…ak.sem)}

• Language for semantic attachments
– Lambda calculus

• Extends First Order Predicate Calculus (FOPC) with function
application

• Example (continued):
– Nouns represented by constants

• Prop-n -> AyCaramba {AyCaramba}
• N -> meat {meat}

Semantic Attachment Example

• Phrase semantics is function of SA of children
– E.g. NP -> Prop-n {Prop-n.sem}
– NP -> N {N.sem}

• More complex functions are parameterized
– E.g. Verb -> serves

– VP -> Verb NP {V.sem(NP.sem)}
• Application=

– S -> NP VP
• Application=

)},(),(),({ xeServedyeServerServingeIsaeyx ∧∧∃λλ

),(),(),(MeateServedyeServerServingeIsaey ∧∧∃λ

),(),(),(MeateServedAyCarambaeServerServingeIsae ∧∧∃

Complex Attachments

• Complex terms:
– Allow FOPC expressions to appear in otherwise

illegal positions
• E.g. Server(e, x Isa(x,Restaurant))
• Embed in angle brackets
• Translates as x Isa(x,Restaurant) Server(e,x)

– Connective depends on quantifier

• Quantifier Scoping
– Ambiguity: Every restaurant has a menu

• Readings: all have a menu; all have same menu
• Potentially O(n!) scopings (n=# quanifiers)

– Solve ad-hoc fashion

∃
∧∃

Inventory of Attachments

• S -> NP VP {DCL(VP.sem(NP.sem))}

• S -> VP {IMP(VP.sem(DummyYou)}

• S -> Aux NP VP {YNQ(VP.sem(NP.sem))}
• S -> WhWord NP VP

– {WHQ(NP.sem.var,VP.sem(NP.sem))}

• Nom -> Noun Nom {λx Nom.sem(x) NN(Noun.sem)}
• PP -> P NP {P.sem(NP.sem)} ;; NP mod

• PP -> P NP {NP.sem} ;; V arg PP

• P -> on {λyλx On(x,y)}

• Det -> a { }

• Nom -> N {λx Isa(x,N.sem)}

∧

∃

Earley Parsing with Semantics

• Implement semantic analysis
– In parallel with syntactic parsing

• Enabled by compositional approach

• Required modifications
– Augment grammar rules with semantic field
– Augment chart states with meaning expression
– Completer computes semantics – e.g. unifies

• Can also fail to unify
– Blocks semantically invalid parses

• Can impose extra work

Sidelight: Idioms

• Not purely compositional
– E.g. kick the bucket = die
– tip of the iceberg = beginning

• Handling:
– Mix lexical items with constituents (word nps)
– Create idiom-specific const. for productivity
– Allow non-compositional semantic attachments

• Extremely complex: e.g. metaphor

Approach II: Semantic Grammars

• Issue:
– Grammatical overkill

• Constituents with little (no) contribution to meaning
• Constituents so general that semantics are vacuous

– Mismatch of locality
• Components scattered around tree

• Solution: Semantic Grammars
– Developed for dialogue systems

• Tied to domain
• Exclude unnecessary elements

Semantic Grammar Example

• What do I have on Thursday?
– CalQ -> What Aux UserP have {on} DateP

• Cal action:=find; CalOwner:= head UserP;
Date:=head DateP;

– UserP-> Pron
• Head:=Head Pron

– Pron-> I
• Head:= USER

– DateP -> Dayof Week
• Head:= sem DayofWeek

Semantic Grammar Pros & Cons

• Useful with ellipsis & anaphora
– Restrict input by semantic class: e.g. DataP

• Issues:
– Limited reuse

• Tied to application domain

– Simple rules may overgenerate

