
Words:
Surface Variation and Automata

CMSC 35100
Natural Language Processing

April 3, 2003

Roadmap

● The NLP Pipeline

● Words: Surface variation and automata

– Motivation:

● Morphological and pronunciation variation

– Mechanisms:

● Patterns: Regular expressions

● Finite State Automata and Regular Languages
– Non-determinism, Transduction, and Weighting

– FSTs and Morphological/Phonological Rules

Real Language Understanding

● Requires more than just pattern matching

● But what?,

● 2001:

● Dave: Open the pod bay doors, HAL.

● HAL: I'm sorry, Dave. I'm afraid I can't do that.

Language Processing Pipeline

Phonetic/Phonological Analysis

Morphological analysis

OCR/Tokenization

Syntactic analysis

Semantic Interpretation

Discourse Processing

speech text

Phonetics and Phonology

● Convert an acoustic sequence to word sequence

● Need to know:

– Phonemes: Sound inventory for a language

– Vocabulary: Word inventory – pronunciations

– Pronunciation variation:

● Colloquial, fast, slow, accented, context

Morphology & Syntax
● Morphology: Recognize and produce variations

in word forms

– (E.g.) Inflectional morphology:
● e.g. Singular vs plural; verb person/tense

– Door + sg: door

– Door + plural: doors

– Be + 1st person, sg, present: am

● Syntax: Order and group words together in
sentence

– Open the pod bay doors

– Vs

– Pod the open doors bay

Semantics

● Understand word meanings and combine
meanings in larger units

● Lexical semantics:

– Bay: partially enclosed body of water; storage area

● Compositional sematics:

– “pod bay doors”:

● Doors allowing access to bay where pods are kept

Discourse & Pragmatics

● Interpret utterances in context

– Resolve references:
● “I'm afraid I can't do that”

– “that” = “open the pod bay doors”

– Speech act interpretation:
● “Open the pod bay doors”

– Command

Surface Variation: Morphology

● Searching for documents about

– “Televised sports”

● Many possible surface forms:

– Televised, televise, television, ..

– Sports, sport, sporting

● Convert to some common base form

– Match all variations

– Compact representation of language

Surface Variation: Morphology

● Inflectional morphology:

– Verb: past, present; Noun: singular, plural

– e.g. Televise: inf; televise +past -> televised

– Sport+sg: sport; sport+pl: sports

● Derivational morphology:

– v->n: televise -> television

● Lexicon:Root form + morphological features

● Surface: Apply rules for combination

● Identify patterns of transformation, roots, affixes..

Surface Variation: Pronunciation

● Regular English plural: +s

● English plural pronunciation:

– cat+s -> cats where s=s, but

– dog+s -> dogs where s=z, and

– base+s -> bases where s=iz

● Phonological rules govern morpheme combination

– +s = s, unless [voiced]+s = z, [sibilant]+s= iz

● Common lexical representation

– Mechanism to convert appropriate surface form

Representing Patterns

● Regular Expressions

– Strings of 'letters' from an alphabet Sigma

– Combined by concatenation, union, disjunction, and
Kleene *

● Examples: a, aa, aabb, abab, baaa!, baaaaaa!

– Concatenation: ab

– Disjunction: a[abcd]: -> aa, ab, ac, ad

● With precedence: gupp(y|ies) -> guppy, guppies

– Kleene : (0 or more): baa*! -> ba!, baa!, baaaaa!

Could implement ELIZA with RE + substitution

Expressions, Languages & Automata

● Regular expressions specify sets of strings
(languages) that can be implemented with a
finite-state automaton.

Regular
Expressions

Regular
Languages

Finite-State
Automata

Finite-State Automata

● Formally,

– Q: a finite set of N states: q0, q1,...,qN

● Designated start state: q0; final states: F

– Sigma: alphabet of symbols

– Delta(q,i): Transition matrix specifies in state q, on
input i, the next state(s)

● Accepts a string if in final state at end of string

– O.W. Rejects

Finite-State Automata

● Regular Expression: baaa*!

– e.g. Baaaa!

● Closed under concatention, union, disjunction,
and Kleene *

Q0 Q1 Q2 Q3 Q4

A
B A A !

Non-determinism & Search
● Non-determinism:

– Same state, same input -> multiple next states

– E.g.: Delta(q2,a)-> q2, q3

● To recognize a string, follow state sequence

– Question: which one?

– Answer: Either!

● Provide mechanism to backup to choice point
– Save on stack: LIFO: Depth-first search

– Save in queue: FIFO: Breadth-first search

● NFSA equivalent to FSA

– Requires up to 2^n states, though

From Recognition to Transformation

● FSAs accept or reject strings as elements of a
regular language: recognition

● Would like to extend:

– Parsing: Take input and produce structure for it

– Generation: Take structure and produce output form

– E.g. Morphological parsing: words -> morphemes

● Contrast to stemming

– E.g. TTS: spelling/representation -> pronunciation

Morphology
● Study of minimal meaning units of language

– Morphemes

● Stems: main units; Affixes: additional units

● E.g. Cats: stem=cat; affix=s (plural)

– Inflectional vs Derivational:

● Inflection: add morpheme, same part of speech
● E.g. Plural -s of noun; -ed: past tense of verb

● Derivation: add morpheme, change part of speech
● E.g. verb+ation -> noun; realize -> realization

● Huge language variation:

● English: relatively little: concatenative

● Arabic: richer, templatic kCtCb + -s: kutub

● Turkish: long affix strings, “agglutinative”

Morphology Issues

● Question 1: Which affixes go with which stems?

– Tied to POS (e.g. Possessive with noun; tenses: verb)

– Regular vs irregular cases

● Regular: majority, productive – new words inherit

● Irregular: small (closed) class – often very common words

● Question 2: How does the spelling change with
the affix?

– E.g. Run + ing -> running; fury+s -> furies

Associating Stems and Affixes

● Lexicon

– Simple idea: list of words in a language

– Too simple!

● Potentially HUGE: e.g. Agglutinative languages

– Better:

● List of stems, affixes, and representation of morphotactics

● Split stems into equivalence classes w.r.t. morphology
– E.g. Regular nouns (reg-noun) vs irregular-sg-noun...

● FSA could accept legal words of language

– Inputs: words-classes, affixes

Automaton for English Nouns

q0 q1 q2

noun-reg plural -s

noun-irreg-sg

noun-irreg-pl

Two-level Morphology

● Morphological parsing:

– Two levels: (Koskenniemi 1983)

● Lexical level: concatenation of morphemes in word

● Surface level: spelling of word surface form

– Build rules mapping between surface and lexical

● Mechanism: Finite-state transducer (FST)

– Model: two tape automaton

– Recognize/Generate pairs of strings

FSA -> FST

● Main change: Alphabet

– Complex alphabet of pairs: input x output symbols

– e.g. i:o

● Where i is in input alphabet, o in output alphabet

● Entails change to state transition function

– Delta(q, i:o): now reads from complex alphabet

● Closed under union, inversion, and composition

– Inversion allows parser-as-generator

– Composition allows series operation

Simple FST for Plural Nouns

reg-noun-stem

irreg-noun-sg-form

irreg-noun-pl-form

+N:e

+N:e

+N:e

+SG:#

+PL:^s#

+SG:#

+PL:#

Rules and Spelling Change

● Example: E insertion in plurals

– After x, z, s...: fox + -s -> foxes

● View as two-step process

– Lexical -> Intermediate (create morphemes)

– Intermediate -> Surface (fix spelling)

● Rules: (a la Chomsky & Halle 1968)

– Epsilon -> e/{x,z,s}^__s#

● Rewrite epsilon (empty) as e when it occurs between x,s,or
z at end of one morpheme and next morpheme is -s

^: morpheme boundary; #: word boundary

E-insertion FST

q5

q3 q4q0 q1 q2

^:e,
other
#

z,s,x
z,s,x

z,s,x
other

s ^:e

#,other

#,other

#

^:e

z,x

e:e
s

Implementing Parsing/Generation

● Two-layer cascade of transducers (series)

– Lexical -> Intermediate; Intermediate -> Surface

● I->S: all the different spelling rules in parallel

● Bidirectional, but

– Parsing more complex

● Ambiguous!
– E.g. Is fox noun or verb?

Shallow Morphological Analysis

● Motivation: Information Retrieval

– Just enable matching – without full analysis

● Stemming:

– Affix removal

● Often without lexicon

● Just return stems – not structure

– Classic example: Porter stemmer

● Rule-based cascade of repeated suffix removal
– Pattern-based

● Produces: non-words, errors, ...

Automatic Acquisition of
Morphology

● “Statistical Stemming” (Cabezas, Levow, Oard)

– Identify high frequency short affix strings for removal

– Fairly effective for Germanic, Romance languages

● Light Stemming (Arabic)

– Frequency-based identification of templates & affixes

● Minimum description length approach
– (Brent and Cartwright1996, DeMarcken 1996, Goldsmith 2000

– Minimize cost of model + cost of lexicon | model

●

