Words: Computational Morphology and Phonology

CMSC 35100 Natural Language Processing April 8, 2003

Roadmap

- Words: Surface variation and automata
 - FSTs and Morphological/Phonological Rules
 - Morphology: Implementing spelling change
 - Fox example
 - Automatic acquisition
 - Phonology:
 - Brief! Introduction to Phonetics and Phonology
 - Phone classes
 - Implementing letter to sound rules (FST)
 - Fox redux

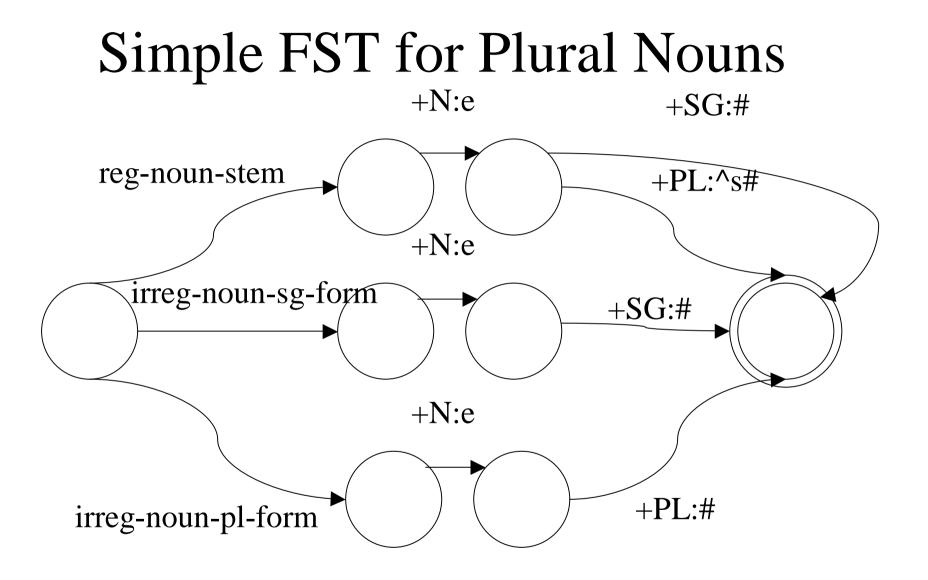
Surface Variation: Morphology

- Searching for documents about
 - "Televised sports"
- Many possible surface forms:
 - Televised, televise, television, ..
 - Sports, sport, sporting
- Convert to some common base form
 - Match all variations
 - Compact representation of language

Surface Variation: Pronunciation

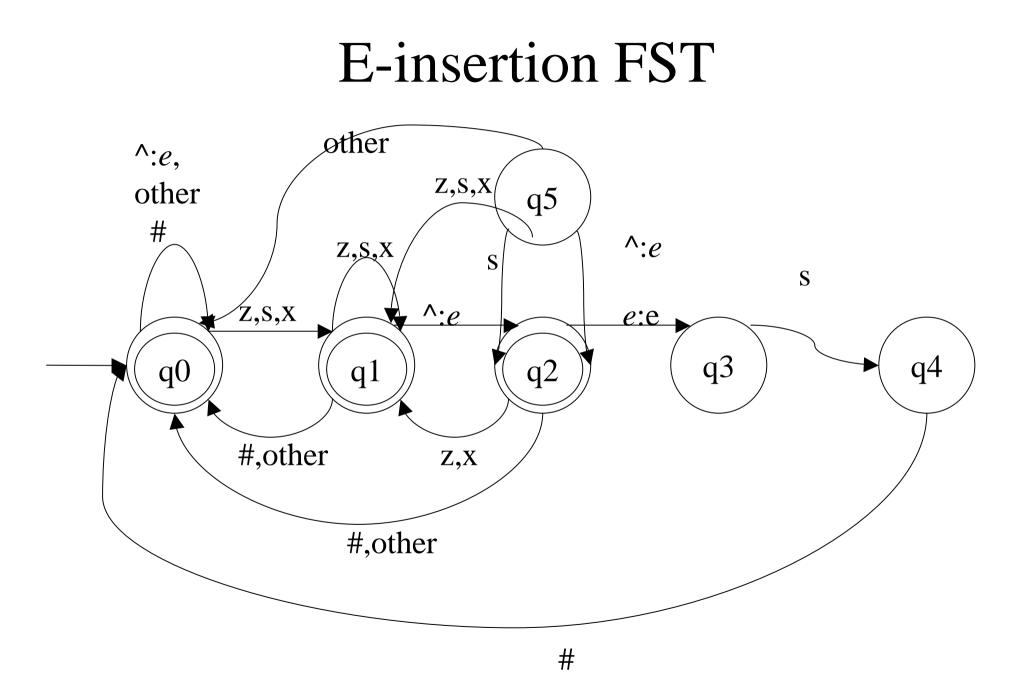
- Regular English plural: +s
- English plural pronunciation:
 - cat+s -> cats where s=s, but
 - dog+s -> dogs where s=z, and
 - base+s -> bases where s=iz
- Phonological rules govern morpheme combination

 $- +s \rightarrow s$, unless [voiced]^s -> z, or [sibilant]^s->iz

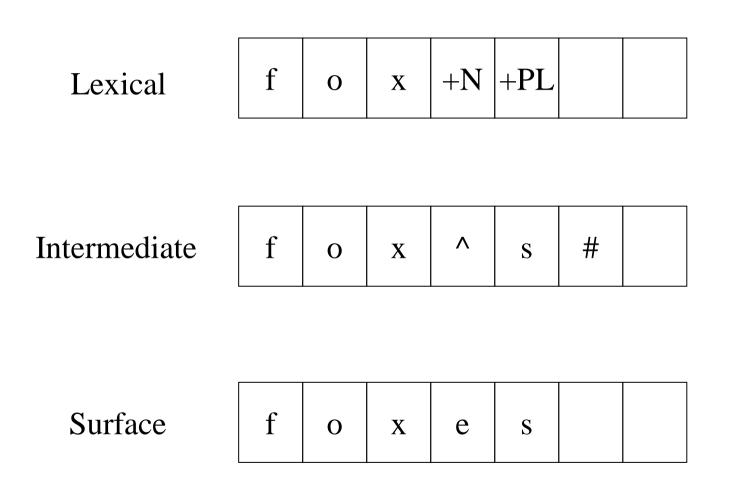

- Common lexical representation
 - Mechanism to convert appropriate surface form

Two-level Morphology

- Morphological parsing:
 - Two levels: (Koskenniemi 1983)
 - Lexical level: concatenation of morphemes in word
 - Surface level: spelling of word surface form
 - Build rules mapping between surface and lexical
- Mechanism: Finite-state transducer (FST)
 - Model: two tape automaton
 - Recognize/Generate pairs of strings


FSA -> FST

- Main change: Alphabet
 - Complex alphabet of pairs: input x output symbols
 - e.g. i:o
 - Where i is in input alphabet, o in output alphabet
- Entails change to state transition function
 - Delta(q, i:o): now reads from complex alphabet
- Closed under union, inversion, and composition
 - Inversion allows parser-as-generator
 - Composition allows series operation



Rules and Spelling Change

- Example: E insertion in plurals
 - After x, z, s...: fox + -s -> foxes
- View as two-step process
 - Lexical -> Intermediate (create morphemes)
 - Intermediate -> Surface (fix spelling)
- Rules: (a la Chomsky & Halle 1968)
 - Epsilon -> $e/{x,z,s}^{s#}$
 - Rewrite epsilon (empty) as e when it occurs between x,s,or z at end of one morpheme and next morpheme is -s

Accepting Foxes

Implementing Parsing/Generation

- Two-layer cascade of transducers (series)
 - Lexical -> Intermediate; Intermediate -> Surface
 - I->S: all the different spelling rules in parallel
- Bidirectional, but
 - Parsing more complex
 - Ambiguous!
 - E.g. Is fox noun or verb?

Shallow Morphological Analysis

- Motivation: Information Retrieval
 - Just enable matching without full analysis
- Stemming:
 - Affix removal
 - Often without lexicon
 - Just return stems not structure
 - Classic example: Porter stemmer
 - Rule-based cascade of repeated suffix removal
 - Pattern-based
 - Produces: non-words, errors, ...

Automatic Acquisition of Morphology

- "Statistical Stemming" (Cabezas, Levow, Oard)
 - Identify high frequency short affix strings for removal
 - Fairly effective for Germanic, Romance languages
- Light Stemming (Arabic)
 - Frequency-based identification of affixes
- Minimum description length approach
 - (Brent and Cartwright1996, DeMarcken 1996, Goldsmith 2000)
 - Minimize cost of model + cost of lexicon | model

Computational Phonology & TTS

- Range of correspondences between sound and text
 - Writing systems from logographic to phonetic
- Question: How are words pronounced via phones?
 - Phones (basic speech units)
 - Crucial for TTS and ASR
 - Challenge: Variability!
 - Phones pronounced differently in different contexts (e.g. [t]) Phonology models this variatiion

Phonetics & Transcription

- Word pronunciation model:
 - String of symbols representing phone
- Phone transcription:
 - International Phonetic Alphabet (IPA)
 - Goal: Transcription of all languages
 - Sounds and transcription rules
 - ARPABET: ASCII –based 1- or 2- character system
 - More English-focused, computational
 - NOT identical to alphabet in general
 - E.g. a -> aa or ax ar ae

ARPAbet Snippet

- - iy: bee
- - ih: hit
- - ey: day
- -eh: bet
- -ae: cat
- -aa: father
- -ao: dog
- -ow: show
- -uw: sue....

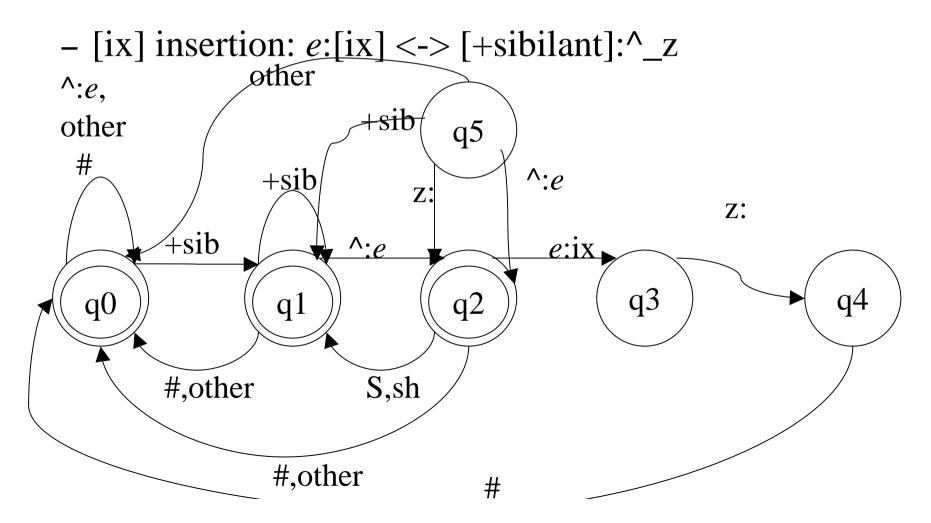
- -p: put
- -t: top
- -th: thin
- -dh: this
- -jh: jay
- -zh: ambrosia
- -dx: butter
- -nx: winter
- -el: little....

Fast Phonology

Consonants: Closure/Obstruction in vocal tract

- Place of articulation (where restriction occurs)
 - Labial: lips (p, b), Labiodental: lips & teeth (f,v)
 - Dental: teeth: (th,dh)
 - Alvoelar:roof of mouth behind teeth (t.d)
 - Palatal: palate: (y); Palato-alvoelar: (sh, jh, zh)...
 - Velar: soft palate (back): k,g ; Glottal
- Manner of articulation (how restrict)
 - Stop (t): closure + release; plosive (w/ burst of air)
 - Nasal (n): nasal cavity
 - Frictative (s,sh,) turbulence: Affricate: stop+fricative (jh, ch)
 - Approximant (w,l,r)
 - Tap/Flap: quick touch to alvoelar ridge

Fast Phonology


- Vowels: Open vocal tract: Articulator position
 - Vowel height: position of highest point of tongue
 - Front (iy) vs Back (uw)
 - High: (ih) vs Low (eh)
 - Diphthong: tongue moves: (ey)
 - Lip shape
 - Rounded: (uw)

Phonological Variation

- Consider t in context:
 - -talk: t unvoiced, aspirated
 - -stalk: d often unvoiced
 - -butter: dx just flap, etc
- Can model with phonological rule
 - Flap rule: $\{t,d\} \rightarrow [dx]/V'_V$
 - T,d becomes flap when between stressed & unstressed vowel

Phonological Rules & FSTs

• Foxes redux:

Harmony

- Vowel harmony:
 - Vowel changes sound be more similar to other
 - E.g. assimilate to roundness and backness of preceding
 - Yokuts examples:
 - dub+hin -> dubhun
 - xil+hin -> xilhin
 - Bok'+al -> bok'ol
 - Xat+al -> xatal
- Can also be handled by FST

Text-to-Speech

- Key components:
 - Pronouncing dictionary
 - Rules
- Dictionary: E.g. CELEX, PRONLEX, CMUDict
 - List of pronunciations
 - Different pronunciations, dialects
 - Sometimes: part of speech, lexical stress
 - Problem: Lexical Gaps
 - E.g. Names!

TTS: Resolving Lexical Gaps

- Rules applied to fill lexical gaps
 - Now and then
- Gaps & Productivity:
 - Infinitely many; can't just list
 - Morphology
 - Numbers
 - Different styles, contexts: e.g. phone number, date,..
 - Names
 - Other language influences

FST-based TTS

- Components:
 - FST for pronunciation of words & morphemes in lex
 - FSA for legal morpheme sequences
 - FSTs for individual pronunciation rules
 - Rules/transducers for e.g. names & acronyms
 - Default rules for unknown words

Modeling Lexicon

- Enrich lexicon:
 - Orthographic + Phonological
 - E.g. cat = c|k a|ae t|t; goose = g|g oo|uw s|s e|e