Pronunciation Variation: TTS & Probabilistic Models

CMSC 35100 Natural Language Processing April 10, 2003

Fast Phonology

Consonants: Closure/Obstruction in vocal tract

- Place of articulation (where restriction occurs)
 - Labial: lips (p, b), Labiodental: lips & teeth (f,v)
 - Dental: teeth: (th,dh)
 - Alvoelar:roof of mouth behind teeth (t.d)
 - Palatal: palate: (y); Palato-alvoelar: (sh, jh, zh)...
 - Velar: soft palate (back): k,g ; Glottal
- Manner of articulation (how restrict)
 - Stop (t): closure + release; plosive (w/ burst of air)
 - Nasal (n): nasal cavity
 - Frictative (s,sh,) turbulence: Affricate: stop+fricative (jh, ch)
 - Approximant (w,l,r)
 - Tap/Flap: quick touch to alvoelar ridge

Fast Phonology

- Vowels: Open vocal tract: Articulator position
 - Vowel height: position of highest point of tongue
 - Front (iy) vs Back (uw)
 - High: (ih) vs Low (eh)
 - Diphthong: tongue moves: (ey)
 - Lip shape
 - Rounded: (uw)

Phonological Variation

- Consider t in context:
 - --talk: t -- unvoiced, aspirated
 - --stalk: d -- often unvoiced
 - -butter: dx just flap, etc
- Can model with phonological rule
 - Flap rule: {t,d} -> [dx]/V'___V
 - T,d becomes flap when between stressed & unstressed vowel

Phonological Rules & FSTs

- Foxes redux:
 - [ix] insertion: e:[ix] <-> [+sibilant]:^_z

Harmony

- Vowel harmony:
 - Vowel changes sound be more similar to other
 - E.g. assimilate to roundness and backness of preceding
 - Yokuts examples:
 - dub+hin -> dubhun
 - xil+hin -> xilhin
 - Bok'+al -> bok'ol
 - Xat+al -> xatal
- Can also be handled by FST

Text-to-Speech

- Key components:
 - Pronouncing dictionary
 - Rules
- Dictionary: E.g. CELEX, PRONLEX, CMUDict
 - List of pronunciations
 - Different pronunciations, dialects
 - Sometimes: part of speech, lexical stress
 - Problem: Lexical Gaps
 - E.g. Names!

TTS: Resolving Lexical Gaps

- Rules applied to fill lexical gaps
 Now and then
- Gaps & Productivity:
 - Infinitely many; can't just list
 - Morphology
 - Numbers
 - Different styles, contexts: e.g. phone number, date,...
 - Names
 - Other language influences

FST-based TTS

- Components:
 - FST for pronunciation of words & morphemes in lex
 - FSA for legal morpheme sequences
 - FSTs for individual pronunciation rules
 - Rules/transducers for e.g. names & acronyms
 - Default rules for unknown words

FST TTS

- Enrich lexicon:
 - Orthographic + Phonological
 - E.g. cat = c|k a|ae t|t; goose = g|g oo|uw s|s e|e
- Build FST for lexicon to intermediate
 - Use rich lexicon
- Build FSTs for pronunciation rules
- Names & Acronyms:
 - Liberman&Church: 50000 wd list
 - Generalization rules
 - Affixes: s, ville, son..; Compounds
 - Rhyming rules

Probabilistic Pronunciation

- Sources of variation:
 - Lexical variation: Represent in lexicon
 - Differences in what segments form a word
 - E.g. vase, brownsville
 - Sociolinguistic variation: e.g. dialect, register, style
 - Allophonic variation:
 - Differences in segment values in context
 - Surface form: phonetic & articulatory effects
 - » E.g. t: about
 - Coarticulation: Dis/Assimilation, Deletion, Flapping, Vowel reduction, epenthesis

The ASR Pronunciation Problem

- Given a series of phones, what is the most probable word?
 - Simplification: Assume phone sequence known, word boundaries known
- Approach: Noisy channel model
 - Surface form is an instance of lexical form that has passed through a noisy communication path Model channel to remove noise, find original

Bayesian Model

- Pr(w|O) = Pr(O|w)Pr(w)/P(O)
- Goal: Most probable word
 - Observations held constant
 - Find w to maximize Pr(O|w)*Pr(w)
- Where do we get the likelihoods? Pr(O|w)
 - Probabilistic rules (Labov)
 - Add probabilities to pronunciation variation rules
 - Count over large corpus of surface forms wrt lexicon
- Where do we get Pr(w)?
 - Similarly count over words in a large corpus

Automatic Rule Induction

- Decision trees
 - Supervised machine learning technique
 - Input: lexical phone, context features
 - Output: surface phone
 - Approach:
 - Identify features that produce subsets with least entropy
 - Repeatedly split inputs on features until some threshold
 - Classification:
 - Traverse tree based on features of new inputs
 - Assign majority classification at leaf

Weighted Automata

- Associate a weight (probability) with each arc
 - Determine weights by decision tree compilation or counting from a large corpus

Computed from Switchboard corpus

Forward Computation

- For a weighted automaton and a phoneme sequence, what is its likelihood?
 - Automaton: Tuple
 - Set of states Q: q0,...qn
 - Set of transition probabilities between states aij,
 - Where aij is the probability of transitioning from state i to j
 - Special start & end states
 - Inputs: Observation sequence: O = o1,o2,...,ok
 - Computed as:
 - forward[t,j] = $P(01,02...ot,qt=j|\lambda)p(w)=\Sigma i \text{ forward}[t-1,i]*aij*bjt$
 - Sums over all paths to qt=j

Viterbi Decoding

- Given an observation sequence o and a weighted automaton, what is the mostly likely state sequence?
 - Use to identify words by merging multiple word pronunciation automata in parallel
 - Comparable to forward
 - Replace sum with max
- Dynamic programming approach
 - Store max through a given state/time pair

Viterbi Algorithm

Function Viterbi(observations length T, state-graph) returns best-path Num-states<-num-of-states(state-graph) Create path prob matrix viterbi[num-states+2,T+2] Viterbi[0,0]<- 1.0 For each time step t from 0 to T do for each state s from 0 to num-states do for each transition s' from s in state-graph new-score<-viterbi[s,t]*at[s,s']*bs'(ot) if ((viterbi[s',t+1]=0) || (viterbi[s',t+1]<new-score)) then viterbi[s',t+1] <- new-score back-pointer[s',t+1]<-s Backtrace from highest prob state in final column of viterbi[] & return