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The ASR Pronunciation Problem

Given a series of phones, what is the most 
probable word?

Simplification: Assume phone sequence known, 
word boundaries known

Approach: Noisy channel model

Surface form is an instance of lexical form that 
has passed through a noisy communication path

Model channel to remove noise, find original



Bayesian Model

• Pr(w|O) = Pr(O|w)Pr(w)/P(O)

• Goal: Most probable word
– Observations held constant

– Find w to maximize Pr(O|w)*Pr(w)

• Where do we get the likelihoods? – Pr(O|w)
– Probabilistic rules (Labov)

• Add probabilities to pronunciation variation rules
– Count over large corpus of surface forms wrt lexicon

• Where do we get Pr(w)?
– Similarly – count over words in a large corpus



Weighted Automata

• Associate a weight (probability) with each arc
- Determine weights by  decision tree compilation or 

counting from a large corpus
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Forward Computation

• For a weighted automaton and a phoneme sequence, 
what is its likelihood?
– Automaton: Tuple

• Set of states Q: q0,…qn

• Set of transition probabilities between states aij,
– Where aij is the probability of transitioning from state i to j

• Special start & end states

– Inputs: Observation sequence: O = o1,o2,…,ok

– Computed as:
• forward[t,j] = P(o1,o2…ot,qt=j|λ)p(w)=Σi forward[t-1,i]*aij*bjt

– Sums over all paths to qt=j



Viterbi Decoding

• Given an observation sequence o and a 
weighted automaton, what is the mostly likely 
state sequence?
– Use to identify words by merging multiple word 

pronunciation automata in parallel
– Comparable to forward

• Replace sum with max

• Dynamic programming approach
– Store max through a given state/time pair



Viterbi Algorithm

Function Viterbi(observations length T, state-graph) returns best-path
Num-states<-num-of-states(state-graph)
Create path prob matrix viterbi[num-states+2,T+2]
Viterbi[0,0]<- 1.0
For each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s’ from s in state-graph

new-score<-viterbi[s,t]*at[s,s’]*bs’(ot)
if ((viterbi[s’,t+1]=0) || (viterbi[s’,t+1]<new-score))

then
viterbi[s’,t+1] <- new-score
back-pointer[s’,t+1]<-s

Backtrace from highest prob state in final column of viterbi[] & return



Segmentation

• Breaking sequence into chunks
– Sentence segmentation

• Break long sequences into sentences

– Word segmentation
• Break character/phonetic sequences into words

– Chinese: typically written w/o whitespace

» Pronunciation affected by units
– Language acquisition:

» How does a child learn language from stream of 
phones?



Models of Segmentation

• Many: 
– Rule-based, heuristic longest match

• Probabilistic:
– Each word associated with its probability 
– Find sequence with highest probability

• Typically compute as log probs & sum

– Implementation: Weighted FST cascade
• Each word = chars + probability
• Self-loop on dictionary
• Compose input with dict*
• Compute most likely



N-grams

• Perspective:
– Some sequences (words/chars) are more 

likely than others
– Given sequence, can guess most likely next

• Used in
– Speech recognition
– Spelling correction,
– Augmentative communication
– Other NL applications



Corpus Counts

• Estimate probabilities by counts in large 
collections of text/speech

• Issues:
– Wordforms (surface) vs lemma (root)
– Case? Punctuation? Disfluency?
– Type (distinct words) vs Token (total)



Basic N-grams

• Most trivial: 1/#tokens: too simple!
• Standard unigram: frequency

– # word occurrences/total corpus size
• E.g. the=0.07; rabbit = 0.00001

– Too simple: no context!

• Conditional probabilities of word sequences
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Markov Assumptions

• Exact computation requires too much data
• Approximate probability given all prior wds

– Assume finite history
– Bigram: Probability of word given 1 previous

• First-order Markov

– Trigram: Probability of word given 2 previous

• N-gram approximation

)|()|( 1
1

1
1

−
+−

− ≈ n
Nnn

n
n wwPwwP

)|()( 1
1

1 −
=

∏≈ k

n

k
k

n wwPwPBigram sequence



Issues

• Relative frequency
– Typically compute count of sequence

• Divide by prefix

• Corpus sensitivity
– Shakespeare vs Wall Street Journal

• Very unnatural

• Ngrams
– Unigram: little; bigrams: colloc; trigrams:phrase
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