
Probabilistic Pronunciation +
N-gram Models

CMSC 35100
Natural Language Processing

April 15, 2003

The ASR Pronunciation Problem

Given a series of phones, what is the most
probable word?

Simplification: Assume phone sequence known,
word boundaries known

Approach: Noisy channel model

Surface form is an instance of lexical form that
has passed through a noisy communication path

Model channel to remove noise, find original

Bayesian Model

• Pr(w|O) = Pr(O|w)Pr(w)/P(O)

• Goal: Most probable word
– Observations held constant

– Find w to maximize Pr(O|w)*Pr(w)

• Where do we get the likelihoods? – Pr(O|w)
– Probabilistic rules (Labov)

• Add probabilities to pronunciation variation rules
– Count over large corpus of surface forms wrt lexicon

• Where do we get Pr(w)?
– Similarly – count over words in a large corpus

Weighted Automata

• Associate a weight (probability) with each arc
- Determine weights by decision tree compilation or

counting from a large corpus

start

ax

ix

b

aw

ae dx

t end
0.68

0.2

0.12

0.85

0.15

0.3

0.16

0.54

0.63

0.37

Computed from Switchboard corpus

Forward Computation

• For a weighted automaton and a phoneme sequence,
what is its likelihood?
– Automaton: Tuple

• Set of states Q: q0,…qn

• Set of transition probabilities between states aij,
– Where aij is the probability of transitioning from state i to j

• Special start & end states

– Inputs: Observation sequence: O = o1,o2,…,ok

– Computed as:
• forward[t,j] = P(o1,o2…ot,qt=j|λ)p(w)=Σi forward[t-1,i]*aij*bjt

– Sums over all paths to qt=j

Viterbi Decoding

• Given an observation sequence o and a
weighted automaton, what is the mostly likely
state sequence?
– Use to identify words by merging multiple word

pronunciation automata in parallel
– Comparable to forward

• Replace sum with max

• Dynamic programming approach
– Store max through a given state/time pair

Viterbi Algorithm

Function Viterbi(observations length T, state-graph) returns best-path
Num-states<-num-of-states(state-graph)
Create path prob matrix viterbi[num-states+2,T+2]
Viterbi[0,0]<- 1.0
For each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s’ from s in state-graph

new-score<-viterbi[s,t]*at[s,s’]*bs’(ot)
if ((viterbi[s’,t+1]=0) || (viterbi[s’,t+1]<new-score))

then
viterbi[s’,t+1] <- new-score
back-pointer[s’,t+1]<-s

Backtrace from highest prob state in final column of viterbi[] & return

Segmentation

• Breaking sequence into chunks
– Sentence segmentation

• Break long sequences into sentences

– Word segmentation
• Break character/phonetic sequences into words

– Chinese: typically written w/o whitespace

» Pronunciation affected by units
– Language acquisition:

» How does a child learn language from stream of
phones?

Models of Segmentation

• Many:
– Rule-based, heuristic longest match

• Probabilistic:
– Each word associated with its probability
– Find sequence with highest probability

• Typically compute as log probs & sum

– Implementation: Weighted FST cascade
• Each word = chars + probability
• Self-loop on dictionary
• Compose input with dict*
• Compute most likely

N-grams

• Perspective:
– Some sequences (words/chars) are more

likely than others
– Given sequence, can guess most likely next

• Used in
– Speech recognition
– Spelling correction,
– Augmentative communication
– Other NL applications

Corpus Counts

• Estimate probabilities by counts in large
collections of text/speech

• Issues:
– Wordforms (surface) vs lemma (root)
– Case? Punctuation? Disfluency?
– Type (distinct words) vs Token (total)

Basic N-grams

• Most trivial: 1/#tokens: too simple!
• Standard unigram: frequency

– # word occurrences/total corpus size
• E.g. the=0.07; rabbit = 0.00001

– Too simple: no context!

• Conditional probabilities of word sequences

)|()...|()|()()(1
2
131211

n
n

n wwPwwPwwPwPwP =
)|(1

1
1

−

=
∏= k

n

k
k wwP

Markov Assumptions

• Exact computation requires too much data
• Approximate probability given all prior wds

– Assume finite history
– Bigram: Probability of word given 1 previous

• First-order Markov

– Trigram: Probability of word given 2 previous

• N-gram approximation

)|()|(1
1

1
1

−
+−

− ≈ n
Nnn

n
n wwPwwP

)|()(1
1

1 −
=

∏≈ k

n

k
k

n wwPwPBigram sequence

Issues

• Relative frequency
– Typically compute count of sequence

• Divide by prefix

• Corpus sensitivity
– Shakespeare vs Wall Street Journal

• Very unnatural

• Ngrams
– Unigram: little; bigrams: colloc; trigrams:phrase

)(

)(
)|(

1

1
1

−

−
− =

n

nn
nn wC

wwC
wwP

