Probabilistic Pronunciation + N-gram Models

CMSC 35100 Natural Language Processing April 15, 2003

The ASR Pronunciation Problem

- Given a series of phones, what is the most probable word?
 - Simplification: Assume phone sequence known, word boundaries known
- Approach: Noisy channel model
 - Surface form is an instance of lexical form that has passed through a noisy communication path Model channel to remove noise, find original

Bayesian Model

- Pr(w|O) = Pr(O|w)Pr(w)/P(O)
- Goal: Most probable word
 - Observations held constant
 - Find w to maximize Pr(O|w)*Pr(w)
- Where do we get the likelihoods? Pr(O|w)
 - Probabilistic rules (Labov)
 - Add probabilities to pronunciation variation rules
 - Count over large corpus of surface forms wrt lexicon
- Where do we get Pr(w)?
 - Similarly count over words in a large corpus

Weighted Automata

- Associate a weight (probability) with each arc
 - Determine weights by decision tree compilation or counting from a large corpus

Computed from Switchboard corpus

Forward Computation

- For a weighted automaton and a phoneme sequence, what is its likelihood?
 - Automaton: Tuple
 - Set of states Q: q0,...qn
 - Set of transition probabilities between states aij,
 - Where aij is the probability of transitioning from state i to j
 - Special start & end states
 - Inputs: Observation sequence: O = o1,o2,...,ok
 - Computed as:
 - forward[t,j] = $P(01,02...ot,qt=j|\lambda)p(w)=\Sigma i \text{ forward}[t-1,i]*aij*bjt$
 - Sums over all paths to qt=j

Viterbi Decoding

- Given an observation sequence o and a weighted automaton, what is the mostly likely state sequence?
 - Use to identify words by merging multiple word pronunciation automata in parallel
 - Comparable to forward
 - Replace sum with max
- Dynamic programming approach
 - Store max through a given state/time pair

Viterbi Algorithm

Function Viterbi(observations length T, state-graph) returns best-path Num-states<-num-of-states(state-graph) Create path prob matrix viterbi[num-states+2,T+2] Viterbi[0,0]<- 1.0 For each time step t from 0 to T do for each state s from 0 to num-states do for each transition s' from s in state-graph new-score<-viterbi[s,t]*at[s,s']*bs'(ot) if ((viterbi[s',t+1]=0) || (viterbi[s',t+1]<new-score)) then viterbi[s',t+1] <- new-score back-pointer[s',t+1]<-s Backtrace from highest prob state in final column of viterbi[] & return

Segmentation

- Breaking sequence into chunks
 - Sentence segmentation
 - Break long sequences into sentences
 - Word segmentation
 - Break character/phonetic sequences into words
 - Chinese: typically written w/o whitespace
 - » Pronunciation affected by units
 - Language acquisition:
 - » How does a child learn language from stream of phones?

Models of Segmentation

- Many:
 - Rule-based, heuristic longest match
- Probabilistic:
 - Each word associated with its probability
 - Find sequence with highest probability
 - Typically compute as log probs & sum
 - Implementation: Weighted FST cascade
 - Each word = chars + probability
 - Self-loop on dictionary
 - Compose input with dict*
 - Compute most likely

N-grams

- Perspective:
 - Some sequences (words/chars) are more likely than others
 - Given sequence, can guess most likely next
- Used in
 - Speech recognition
 - Spelling correction,
 - Augmentative communication
 - Other NL applications

Corpus Counts

- Estimate probabilities by counts in large collections of text/speech
- Issues:
 - Wordforms (surface) vs lemma (root)
 - Case? Punctuation? Disfluency?
 - Type (distinct words) vs Token (total)

Basic N-grams

- Most trivial: 1/#tokens: too simple!
- Standard unigram: frequency
 - # word occurrences/total corpus size
 - E.g. the=0.07; rabbit = 0.00001
 - Too simple: no context!
- Conditional probabilities of word sequences

$$P(w_1^n) = P_n(w_1)P(w_2 | w_1)P(w_3 | w_1^2)...P(w_n | w_1^n)$$

= $\prod_{k=1}^{n} P(w_k | w_1^{k-1})$

Markov Assumptions

- Exact computation requires too much data
- Approximate probability given all prior wds
 - Assume *finite* history
 - Bigram: Probability of word given 1 previous
 - First-order Markov
 - Trigram: Probability of word given 2 previous
- N-gram approximation

$$P(w_n \mid w_1^{n-1}) \approx P(w_n \mid w_{n-N+1}^{n-1})$$

Bigram sequence
$$P(w_1^n) \approx \prod_{k=1}^n P(w_k \mid w_{k-1})$$

Issues

- Relative frequency
 - Typically compute count of sequence
 - Divide by prefix

$$P(w_n | w_{n-1}) = \frac{C(w_n w_{n-1})}{C(w_{n-1})}$$

- Corpus sensitivity
 - Shakespeare vs Wall Street Journal
 - Very unnatural
- Ngrams
 - Unigram: little; bigrams: colloc; trigrams:phrase