N-gram Models

CMSC 35100
Natural Language Processing
April 17, 2003

Roadmap

n-gram models
— Motivation

Basic n-grams
— Markov assumptions

Coping with sparse data
— Smoothing, Backoff

Evaluating the model
— Entropy and Perplexity

N-grams

* Perspective:

— Some sequences (words/chars) are more
likely than others

— Glven sequence, can guess most likely next

e Used In
— Speech recognition
— Spelling correction,
— Augmentative communication
— Other NL applications

Corpus Counts

e Estimate probabilities by counts in large
collections of text/speech

e |Ssues:
— Wordforms (surface) vs lemma (root)

— Case? Punctuation? Disfluency?
— Type (distinct words) vs Token (total)

Basic N-grams

 Most trivial: 1/#tokens: too simple!

o Standard unigram: frequency

— # word occurrences/total corpus size
* E.g.the=0.07; rabbit = 0.00001

— Too simple: no context!
e Conditional probabilities of word sequences

P(W') = P(wy) P(w, [W) P(w; [W)..P(w, [W)
= D P(w, |W1k_1)

Markov Assumptions

e Exact computation requires too much data

« Approximate probability given all prior wds
— Assume finite history

— Bigram: Probability of word given 1 previous
e First-order Markov

— Trigram: Probability of word given 2 previous
e N-gram approximation

P(Wn ‘Wln_l) ~ P(Wn ‘Wr?—_lNﬂ

n
Bigram sequence P(Wln) = D P(Wk |Wk—1)
=1

Issues

* Relative frequency

— Typically compute count of sequence
» Divide by prefix

P(Wn |Wn—1) - C(Wan—l)

C(Wn—l)

o Corpus sensitivity

— Shakespeare vs Walll Street Journal
* Very unnatural

 Ngrams
— Unigram: little; bigrams: colloc; trigrams:phrase

Sparse Data Issues

e Zero-count n-grams

— Problem: Not seen yet! Not necessarily
impossible..

— Solution: Estimate probabilities of unseen events

e Two strategies:

— Smoothing
* Divide estimated probability mass

— Backoff
e Guess higher order n-grams from lower

Smoothing out Zeroes

Add-one smoothing
— Simple: add 1 to all counts -> no zeroes!
— Normalize by count and vocabulary size

Unigrams:

Cu* =(c +1)

— Adjusted count: N +V
— Adjusted probability ~ p ={G*D
" N+V

Bigrams: * _C(w_w)+1
_ Adjusted probability P (W W) = oW) +V

Problem: Too much weight on (former) zeroes

Estimating the Zeroes’ Mass

Witten-Bell discounting

— ldea: Use count of things you’ve seen to estimate
count of things you haven't

Estimate probability mass of zeroes
— Guess same as # of 15t time n-grams = types

. N
Total mass: D.p =

i:c;=0 N N+T
Unigrams: , = =G
. g pl:Ci:O Z(N +T)’p|:ci>0 N+T
Bigrams: zw)= 1
ic(w,w;)=0
* — T(Wx)
PO I = 7 (N +Tw,)
P (W [w)= 2UAL)

o(w,) +T(w,)

Good-Turing Smoothing

 Re-estimate based on n-grams with higher
counts: | | N, = Z 1
— N1 = # bigrams with count 1: bio(b)=c

— E.g. estimate counts of bigrams that didn’t occur
based on those that occurred once

— Assume that counts above some threshold are

reliable
e Basic, c* = c,C> Kk
C* — (C +1) |\IC+1 (C _|_1) |\Ic+1 -C (k+l)Nk+1

N N N,

C c* =

1_ (k +l) |\Ik+1
Nl

Backoff

ldea: If no tri-grams,
estimate with bigrams

E'g' F’S(Wn |Wn—2Wn—1) - P(Wn |Wn—2Wn—1)’ IfC (Wn—ZWn—lwn) > O
— alp(Wn |Wn—1)’ ifC(Wn—ZWn—lwn) - O& C(Wn—lwn) > O

= a,P(w,),o.w.

Deleted interpolation:

— Replace a’s with A’s
that are trained for
word contexts

Evaluating n-gram models

 Entropy & Perplexity
— Information theoretic measures
— Measures information in grammar or fit to data
— Conceptually, lower bound on # bits to encode

« Entropy: H(X): X is a random var, p: prob fn
H(X) == p(x)log, p(x)

XX
— E.g. 8 things: number as code => 3 bits/trans

— Alt. short code if high prob; longer if lower
« Can reduce
« Perplexity: 2F
— Weighted average of number of choices

Entropy of a Sequence

e Basic seguence
%H W) = —% > p(W")log, pW")

W 0L

* Entropy of language:
infinite lengths

— Assume stationary &
ergodic

H(L):Lim_%z P(W,,...,w.) log p(W,,...,w,)

WL

H(L) = Iim—llog P(W,...,W,)

n-oo

Cross-Entropy

 Comparing models
— Actual distribution unknown

— Use simplified model to estimate
» Closer match will have lower cross-entropy

H(p,m)= Lipl—i > p(w,...,w,) logm(w,...,w,)

NwoL

H(p,m) = Iim—ilog m(W,,...,W.)
oo

Entropy of English

e Shannon’s experiment
— Subjects guess strings of letters, count guesses
— Entropy of guess seq = Entropy of letter seq
— 1.3 bits; Restricted text

* Build stochastic model on text & compute
— Brown computed trigram model on varied corpus

— Compute (pre-char) entropy of model
— 1.75 bits

