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Roadmap

• n-gram models
– Motivation

• Basic n-grams
– Markov assumptions

• Coping with sparse data
– Smoothing, Backoff

• Evaluating the model
– Entropy and Perplexity



N-grams

• Perspective:
– Some sequences (words/chars) are more 

likely than others
– Given sequence, can guess most likely next

• Used in
– Speech recognition
– Spelling correction,
– Augmentative communication
– Other NL applications



Corpus Counts

• Estimate probabilities by counts in large 
collections of text/speech

• Issues:
– Wordforms (surface) vs lemma (root)
– Case? Punctuation? Disfluency?
– Type (distinct words) vs Token (total)



Basic N-grams

• Most trivial: 1/#tokens: too simple!
• Standard unigram: frequency

– # word occurrences/total corpus size
• E.g. the=0.07; rabbit = 0.00001

– Too simple: no context!

• Conditional probabilities of word sequences
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Markov Assumptions

• Exact computation requires too much data
• Approximate probability given all prior wds

– Assume finite history
– Bigram: Probability of word given 1 previous

• First-order Markov

– Trigram: Probability of word given 2 previous

• N-gram approximation
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Issues

• Relative frequency
– Typically compute count of sequence

• Divide by prefix

• Corpus sensitivity
– Shakespeare vs Wall Street Journal

• Very unnatural

• Ngrams
– Unigram: little; bigrams: colloc; trigrams:phrase
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Sparse Data Issues

• Zero-count n-grams
– Problem: Not seen yet! Not necessarily 

impossible..
– Solution: Estimate probabilities of unseen events

• Two strategies:
– Smoothing

• Divide estimated probability mass

– Backoff
• Guess higher order n-grams from lower



Smoothing out Zeroes

• Add-one smoothing
– Simple: add 1 to all counts -> no zeroes!
– Normalize by count and vocabulary size

• Unigrams:
– Adjusted count:
– Adjusted probability

• Bigrams:
– Adjusted probability

• Problem: Too much weight on (former) zeroes
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Estimating the Zeroes’ Mass

• Witten-Bell discounting
– Idea: Use count of things you’ve seen to estimate 

count of things you haven’t

• Estimate probability mass of zeroes
– Guess same as # of 1st time n-grams = types

• Total mass:
• Unigrams:
• Bigrams:
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Good-Turing Smoothing

• Re-estimate based on n-grams with higher 
counts:
– N1 = # bigrams with count 1:
– E.g. estimate counts of bigrams that didn’t occur 

based on those that occurred once
– Assume that counts above some threshold are 

reliable
• Basic,
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Backoff

• Idea: If no tri-grams, 
estimate with bigrams

• E.g.
• =
• =
• Deleted interpolation:

– Replace α’s with λ’s 
that are trained for 
word contexts 
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Evaluating n-gram models

• Entropy & Perplexity
– Information theoretic measures
– Measures information in grammar or fit to data
– Conceptually, lower bound on # bits to encode

• Entropy: H(X): X is a random var, p: prob fn

– E.g. 8 things: number as code => 3 bits/trans
– Alt. short code if high prob; longer if lower

• Can reduce 

• Perplexity: 
– Weighted average of number of choices
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Entropy of a Sequence

• Basic sequence

• Entropy of language: 
infinite lengths
– Assume stationary & 

ergodic
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Cross-Entropy

• Comparing models
– Actual distribution unknown
– Use simplified model to estimate

• Closer match will have lower cross-entropy
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Entropy of English

• Shannon’s experiment
– Subjects guess strings of letters, count guesses
– Entropy of guess seq = Entropy of letter seq
– 1.3 bits; Restricted text

• Build stochastic model on text & compute
– Brown computed trigram model on varied corpus
– Compute (pre-char) entropy of model
– 1.75 bits


