Entropy & Hidden Markov Models

Natural Language Processing CMSC 35100 April 22, 2003

Agenda

- Evaluating N-gram models
 - Entropy & perplexity
 - Cross-entropy, English
- Speech Recognition
 - Hidden Markov Models
 - Uncertain observations
 - Recognition: Viterbi, Stack/A*
 - Training the model: Baum-Welch

Evaluating n-gram models

- Entropy & Perplexity
 - Information theoretic measures
 - Measures information in grammar or fit to data
 - Conceptually, lower bound on # bits to encode
- Entropy: H(X): X is a random var, *p*: prob fn

$$H(X) = -\sum_{x \in X} p(x) \log_2 p(x)$$

- E.g. 8 things: number as code => 3 bits/trans
- Alt. short code if high prob; longer if lower
 - Can reduce
- Perplexity: 2^H
 - Weighted average of number of choices

Entropy of a Sequence

- Basic sequence $\frac{1}{n}H(W_1^n) = -\frac{1}{n}\sum_{W_1^n \in L} p(W_1^n)\log_2 p(W_1^n)$
- Entropy of language: infinite lengths
 - Assume stationary & ergodic $H(L) = \lim_{n \to \infty} -\frac{1}{n} \sum_{W \in L} p(w_1, \dots, w_n) \log p(w_1, \dots, w_n)$ $H(L) = \lim_{n \to \infty} -\frac{1}{n} \log p(w_1, \dots, w_n)$

Cross-Entropy

- Comparing models
 - Actual distribution unknown
 - Use simplified model to estimate

• Closer match will have lower cross-entropy

$$H(p,m) = \lim_{n \to \infty} -\frac{1}{n} \sum_{W \in L} p(w_1, ..., w_n) \log m(w_1, ..., w_n)$$

$$H(p,m) = \lim_{n \to \infty} -\frac{1}{n} \log m(w_1, ..., w_n)$$

Entropy of English

- Shannon's experiment
 - Subjects guess strings of letters, count guesses
 - Entropy of guess seq = Entropy of letter seq
 - 1.3 bits; Restricted text
- Build stochastic model on text & compute
 - Brown computed trigram model on varied corpus
 - Compute (pre-char) entropy of model
 - 1.75 bits

Speech Recognition

- Goal:
 - Given an acoustic signal, identify the sequence of words that produced it
 - Speech understanding goal:
 - Given an acoustic signal, identify the meaning intended by the speaker
- Issues:
 - Ambiguity: many possible pronunciations,
 - Uncertainty: what signal, what word/sense produced this sound sequence

Decomposing Speech Recognition

- Q1: What speech sounds were uttered?
 - Human languages: 40-50 phones
 - Basic sound units: b, m, k, ax, ey, ...(arpabet)
 - Distinctions categorical to speakers
 - Acoustically continuous
 - Part of knowledge of language
 - Build per-language inventory
 - Could we learn these?

Decomposing Speech Recognition

- Q2: What words produced these sounds?
 - Look up sound sequences in dictionary
 - Problem 1: Homophones
 - Two words, same sounds: too, two
 - Problem 2: Segmentation
 - No "space" between words in continuous speech
 - "I scream"/"ice cream", "Wreck a nice beach"/"Recognize speech"
- Q3: What meaning produced these words?
 NLP (But that's not all!)

Signal Processing

- Goal: Convert impulses from microphone into a representation that
 - is compact
 - encodes features relevant for speech recognition
- Compactness: Step 1
 - Sampling rate: how often look at data
 - 8KHz, 16KHz,(44.1KHz= CD quality)
 - Quantization factor: how much precision
 - 8-bit, 16-bit (encoding: u-law, linear...)

(A Little More) Signal Processing

- Compactness & Feature identification
 - Capture mid-length speech phenomena
 - Typically "frames" of 10ms (80 samples)
 - Overlapping
 - Vector of features: e.g. energy at some frequency
 - Vector quantization:
 - n-feature vectors: n-dimension space
 - Divide into m regions (e.g. 256)
 - All vectors in region get same label e.g. C256

Speech Recognition Model

- Question: Given signal, what words?
- Problem: uncertainty
 - Capture of sound by microphone, how phones produce sounds, which words make phones, etc
- Solution: Probabilistic model
 - P(words|signal) =
 - P(signal|words)P(words)/P(signal)
 - Idea: Maximize P(signal|words)*P(words)
 - P(signal|words): acoustic model; P(words): lang model

Probabilistic Reasoning over Time

- Issue: Discrete models
 - Speech is continuously changing
 - How do we make observations? States?
- Solution: Discretize
 - "Time slices": Make time discrete
 - Observations, States associated with time: Ot, Qt

Modelling Processes over Time

- Issue: New state depends on preceding states
 Analyzing sequences
- Problem 1: Possibly unbounded # prob tables
 Observation+State+Time
- Solution 1: Assume stationary process
 Rules governing process same at all time
- Problem 2: Possibly unbounded # parents
 - Markov assumption: Only consider finite history
 - Common: 1 or 2 Markov: depend on last couple

Language Model

- Idea: some utterances more probable
- Standard solution: "n-gram" model
 - Typically tri-gram: P(wi|wi-1,wi-2)
 - Collect training data
 - Smooth with bi- & uni-grams to handle sparseness
 - Product over words in utterance

Acoustic Model

- P(signal|words)
 - words -> phones + phones -> vector quantiz'n
- Words -> phones
 - Pronunciation dictionary lookup
 - Multiple pronunciations?
 - Probability distribution (
 - » Dialect Variation: tomato
- →ow→(m) 0.5ey

aa

- » +Coarticulation
- Product along path

Acoustic Model

- P(signal| phones):
 - Problem: Phones can be pronounced differently
 - Speaker differences, speaking rate, microphone
 - Phones may not even appear, different contexts
 - Observation sequence is uncertain
- Solution: Hidden Markov Models
 - 1) Hidden => Observations uncertain
 - -2) Probability of word sequences =>
 - State transition probabilities
 - -3) 1st order Markov => use 1 prior state

Hidden Markov Models (HMMs)

- An HMM is:
 - 1) A set of states: $Q = q_o, q_1, \dots, q_k$
 - 2) A set of transition probabilities: $A = a_{01}, ..., a_{mn}$
 - Where *aij* is the probability of transition $qi \rightarrow qj$
 - 3)Observation probabilities: $B = b_i(o_i)$
 - The probability of observing *ot* in state *i*
 - 4) An initial probability dist over states: π_i
 - The probability of starting in state *i*
 - 5) A set of accepting states

Acoustic Model

- 3-state phone model for [m]
 - Use Hidden Markov Model (HMM)

- Probability of sequence: sum of prob of paths

Viterbi Algorithm

- Find BEST word sequence given signal
 - Best P(words|signal)
 - Take HMM & VQ sequence
 - => word seq (prob)
- Dynamic programming solution
 - Record most probable path ending at a state i
 - Then most probable path from i to end
 - O(bMn)

Viterbi Code

```
Function Viterbi(observations length T, state-graph) returns best-path
Num-states<-num-of-states(state-graph)
Create path prob matrix viterbi[num-states+2,T+2]
Viterbi[0,0]<- 1.0
For each time step t from 0 to T do
 for each state s from 0 to num-states do
   for each transition s' from s in state-graph
      new-score<-viterbi[s,t]*at[s,s']*bs'(ot)
      if ((viterbi[s',t+1]=0) || (viterbi[s',t+1]<new-score))
        then
          viterbi[s',t+1] <- new-score
          back-pointer[s',t+1]<-s
Backtrace from highest prob state in final column of viterbi[] & return
```

Enhanced Decoding

- Viterbi problems:
 - Best phone sequence not necessarily most probable word sequence
 - E.g. words with many pronunciations less probable
 - Dynamic programming invariant breaks on trigram
- Solution 1:
 - Multipass decoding:
 - Phone decoding -> n-best lattice -> rescoring (e.g. tri)

Enhanced Decoding: A*

- Search for highest probability path
 - Use forward algorithm to compute acoustic match
 - Perform **fast match** to find next likely words
 - Tree-structured lexicon matching phone sequence
 - Estimate path cost:
 - Current cost + underestimate of total
 - Store in priority queue
 - Search best first

Modeling Sound, Redux

- Discrete VQ codebook values
 - Simple, but inadequate
 - Acoustics highly variable
- Gaussian pdfs over continuous values
 - Assume normally distributed observations
 - Typically sum over multiple shared Gaussians
 - "Gaussian mixture models"
 - Trained with HMM model

$$b_{j}(o_{t}) = \frac{1}{\sqrt{(2\pi)} |\sum j|} e^{[(o_{t} - \mu_{j})' \sum_{j=1}^{1} (o_{t} - \mu_{j})]}$$

Learning HMMs

- Issue: Where do the probabilities come from?
- Solution: Learn from data
 - Trains transition (aij) and emission (bj) probabilities
 - Typically assume structure
 - Baum-Welch aka forward-backward algorithm
 - Iteratively estimate counts of transitions/emitted
 - Get estimated probabilities by forward comput'n
 - Divide probability mass over contributing paths

Forward Probability

$$\alpha_{t}(i) = P(o_{1}, o_{2}, ..., o_{t}, q_{t} = j | \lambda)$$

$$\alpha_{j}(1) = a_{1j}b_{j}(o_{t}), 1 < j < N$$

$$\alpha_{j}(t) = \left[\sum_{i=2}^{N-1} \alpha_{j}(t-1)a_{aj}\right]b_{j}(o_{t})$$

$$P(O | \lambda) = \alpha_{N}(T) = \sum_{i=2}^{N-1} \alpha_{i}(T)a_{iN}$$

Backward Probability

$$\beta_{i}(t) = P(o_{t+1}, o_{t+2}, ..., o_{T} | q_{t} = j, \lambda)$$

$$\beta_{i}(T) = a_{iN}$$

$$\beta_{i}(t) = \sum_{i=2}^{N-1} a_{ij} b_{j}(o_{t+1}) \beta_{j}(t+1)$$

$$P(O | \lambda) = \alpha_{N}(T) = \beta_{i}(T) = \sum_{j=2}^{N-1} a_{1j} b_{j}(o_{1}) \beta_{j}(1)$$

Re-estimating

• Estimate transitions from i->j

$$\tau_{t}(i,j) = \frac{\alpha_{i}(t)a_{ij}b_{j}(o_{t})\beta_{j}(t+1)}{\alpha_{N}(T)}$$
$$\hat{a}_{ij} = \frac{\sum_{t=1}^{T-1}\tau_{t}(i,j)}{\sum_{t=1}^{T-1}\sum_{j=1}^{N}\tau_{t}(i,j)}$$

• Estimate observations in j

$$\sigma_{j}(t) = \frac{P(q_{t} = j, O \mid \lambda)}{P(O \mid \lambda)} = \frac{\alpha_{j}(t)\beta_{j}(t)}{P(O \mid \lambda)}$$
$$\hat{b}_{j}(v_{k}) = \frac{\sum_{t=1s.t.o_{t}=v_{k}}^{T}\sigma_{j}(t)}{\sum_{t=1}^{T}\sigma_{j}(t)}$$

Does it work?

- Yes:
 - 99% on isolate single digits
 - 95% on restricted short utterances (air travel)
 - 80+% professional news broadcast
- No:
 - 55% Conversational English
 - 35% Conversational Mandarin
 - ?? Noisy cocktail parties

Speech Recognition as Modern AI

- Draws on wide range of AI techniques
 - Knowledge representation & manipulation
 - Optimal search: Viterbi decoding
 - Machine Learning
 - Baum-Welch for HMMs
 - Nearest neighbor & k-means clustering for signal id
 - Probabilistic reasoning/Bayes rule
 - Manage uncertainty in signal, phone, word mapping
- Enables real world application