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Agenda

• Evaluating N-gram models
– Entropy & perplexity

• Cross-entropy, English

• Speech Recognition
– Hidden Markov Models

• Uncertain observations

• Recognition: Viterbi, Stack/A*

• Training the model: Baum-Welch



Evaluating n-gram models
• Entropy & Perplexity

– Information theoretic measures
– Measures information in grammar or fit to data
– Conceptually, lower bound on # bits to encode

• Entropy: H(X): X is a random var, p: prob fn

– E.g. 8 things: number as code => 3 bits/trans
– Alt. short code if high prob; longer if lower

• Can reduce 

• Perplexity: 
– Weighted average of number of choices
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Entropy of a Sequence

• Basic sequence

• Entropy of 
language: infinite 
lengths
– Assume stationary 
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Cross-Entropy

• Comparing models
– Actual distribution unknown

– Use simplified model to estimate
• Closer match will have lower cross-entropy
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Entropy of English
• Shannon’s experiment

– Subjects guess strings of letters, count guesses

– Entropy of guess seq = Entropy of letter seq

– 1.3 bits; Restricted text

• Build stochastic model on text & compute
– Brown computed trigram model on varied corpus

– Compute (pre-char) entropy of model

– 1.75 bits



Speech Recognition

• Goal:
– Given an acoustic signal, identify the sequence 

of words that produced it
– Speech understanding goal:

• Given an acoustic signal, identify the meaning intended by the 
speaker

• Issues:
– Ambiguity: many possible pronunciations, 

– Uncertainty: what signal, what word/sense 
produced this sound sequence



Decomposing Speech Recognition

• Q1: What speech sounds were uttered?
– Human languages: 40-50 phones

• Basic sound units: b, m, k, ax, ey, …(arpabet)

• Distinctions categorical to speakers
– Acoustically continuous

• Part of knowledge of language
– Build per-language inventory

– Could we learn these?



Decomposing Speech Recognition

• Q2: What words produced these sounds?
– Look up sound sequences in dictionary

– Problem 1: Homophones
• Two words, same sounds: too, two

– Problem 2: Segmentation
• No “space” between words in continuous speech

• “I scream”/”ice cream”, “Wreck a nice 
beach”/”Recognize speech”

• Q3: What meaning produced these words?
– NLP (But that’s not all!)





Signal Processing

• Goal: Convert impulses from microphone 
into a representation that 
– is compact

– encodes features relevant for speech recognition

• Compactness: Step 1
– Sampling rate:  how often look at data

• 8KHz, 16KHz,(44.1KHz= CD quality)

– Quantization factor: how much precision
• 8-bit, 16-bit (encoding: u-law, linear…)



(A Little More) Signal Processing

• Compactness & Feature identification
– Capture mid-length speech phenomena

• Typically “frames” of 10ms (80 samples)
– Overlapping 

– Vector of features: e.g. energy at some frequency

– Vector quantization:
• n-feature vectors: n-dimension space

– Divide into m regions (e.g. 256) 

– All vectors in region get same label - e.g. C256



Speech Recognition Model

• Question: Given signal, what words?

• Problem: uncertainty
– Capture of sound by microphone, how phones 

produce sounds, which words make phones, etc

• Solution: Probabilistic model
– P(words|signal) =

– P(signal|words)P(words)/P(signal)

– Idea: Maximize P(signal|words)*P(words)
• P(signal|words): acoustic model; P(words): lang model



Probabilistic Reasoning over 
Time

• Issue: Discrete models 
– Speech is continuously changing

– How do we make observations? States?

• Solution: Discretize
– “Time slices”: Make time discrete

– Observations, States associated with time: Ot, Qt



Modelling Processes over Time

• Issue: New state depends on preceding states
– Analyzing sequences

• Problem 1: Possibly unbounded # prob tables
– Observation+State+Time

• Solution 1: Assume stationary process
– Rules governing process same at all time

• Problem 2: Possibly unbounded # parents
– Markov assumption: Only consider finite history

– Common: 1 or 2 Markov: depend on last couple



Language Model

• Idea: some utterances more probable

• Standard solution: “n-gram” model
– Typically tri-gram: P(wi|wi-1,wi-2)

• Collect training data 
– Smooth with bi- & uni-grams to handle sparseness

– Product over words in utterance



Acoustic Model

• P(signal|words)
– words -> phones  + phones -> vector quantiz’n

• Words -> phones
– Pronunciation dictionary lookup

• Multiple pronunciations?
– Probability distribution

» Dialect Variation: tomato

» +Coarticulation

– Product along path
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Acoustic Model

• P(signal| phones):
– Problem: Phones can be pronounced differently

• Speaker differences, speaking rate, microphone

• Phones may not even appear, different contexts

– Observation sequence is uncertain

• Solution: Hidden Markov Models
– 1) Hidden => Observations uncertain

– 2) Probability of word sequences =>
• State transition probabilities

– 3) 1st order Markov => use 1 prior state



Hidden Markov Models (HMMs)

• An HMM is:
– 1) A set of states:

– 2) A set of transition probabilities: 
• Where aij is the probability of transition qi -> qj

– 3)Observation probabilities:
• The probability of observing ot in state i

– 4) An initial probability dist over states: 
• The probability of starting in state i

– 5) A set of accepting states
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Acoustic Model

• 3-state phone model for [m]
– Use Hidden Markov Model (HMM)

– Probability of sequence: sum of prob of paths
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Viterbi Algorithm

• Find BEST word sequence given signal
– Best P(words|signal)

– Take HMM & VQ sequence 
• => word seq (prob)

• Dynamic programming solution
– Record most probable path ending at a state i

• Then most probable path from i to end

• O(bMn) 



Viterbi Code

Function Viterbi(observations length T, state-graph) returns best-path
Num-states<-num-of-states(state-graph)
Create path prob matrix viterbi[num-states+2,T+2]
Viterbi[0,0]<- 1.0
For each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s’ from s in state-graph

new-score<-viterbi[s,t]*at[s,s’]*bs’(ot)
if ((viterbi[s’,t+1]=0) || (viterbi[s’,t+1]<new-score))

then
viterbi[s’,t+1] <- new-score
back-pointer[s’,t+1]<-s

Backtrace from highest prob state in final column of viterbi[] & return



Enhanced Decoding

• Viterbi problems:
– Best phone sequence not necessarily most probable 

word sequence
• E.g. words with many pronunciations less probable

– Dynamic programming invariant breaks on trigram

• Solution 1:
– Multipass decoding:

• Phone decoding -> n-best lattice -> rescoring (e.g. tri) 



Enhanced Decoding: A*

• Search for highest probability path
– Use forward algorithm to compute acoustic match

– Perform fast match to find next likely words
• Tree-structured lexicon matching phone sequence

– Estimate path cost: 
• Current cost + underestimate of total

– Store in priority queue

– Search best first



Modeling Sound, Redux

• Discrete VQ codebook values 
– Simple, but inadequate

– Acoustics highly variable

• Gaussian pdfs over continuous values
– Assume normally distributed observations

• Typically sum over multiple shared Gaussians
– “Gaussian mixture models”

– Trained with HMM model
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Learning HMMs

• Issue: Where do the probabilities come from?

• Solution: Learn from data
– Trains transition (aij) and emission  (bj) probabilities

• Typically assume structure

– Baum-Welch aka forward-backward algorithm
• Iteratively estimate counts of transitions/emitted

• Get estimated probabilities by forward comput’n
– Divide probability mass over contributing paths



Forward Probability
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Backward Probability
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Re-estimating 

• Estimate transitions 
from i->j

• Estimate 
observations in j
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Does it work?

• Yes:
– 99% on isolate single digits

– 95% on restricted short utterances (air travel)

– 80+% professional news broadcast

• No:
– 55% Conversational English

– 35% Conversational Mandarin

– ?? Noisy cocktail parties



Speech Recognition as
Modern AI

• Draws on wide range of AI techniques
– Knowledge representation & manipulation

• Optimal search: Viterbi decoding

– Machine Learning
• Baum-Welch for HMMs

• Nearest neighbor & k-means clustering for signal id

– Probabilistic reasoning/Bayes rule
• Manage uncertainty in signal, phone, word mapping

• Enables real world application


