
Entropy &
Hidden Markov Models

Natural Language Processing

CMSC 35100

April 22, 2003

Agenda

• Evaluating N-gram models
– Entropy & perplexity

• Cross-entropy, English

• Speech Recognition
– Hidden Markov Models

• Uncertain observations

• Recognition: Viterbi, Stack/A*

• Training the model: Baum-Welch

Evaluating n-gram models
• Entropy & Perplexity

– Information theoretic measures
– Measures information in grammar or fit to data
– Conceptually, lower bound on # bits to encode

• Entropy: H(X): X is a random var, p: prob fn

– E.g. 8 things: number as code => 3 bits/trans
– Alt. short code if high prob; longer if lower

• Can reduce

• Perplexity:
– Weighted average of number of choices

)(log)()(2 xpxpXH
Xx
∑
∈

−=

H2

Entropy of a Sequence

• Basic sequence

• Entropy of
language: infinite
lengths
– Assume stationary

& ergodic

)(log)(
1

)(
1

1211

1

n

LW

nn WpWp
n

WH
n n

∑
∈

−=

),...,(log
1

lim)(

),...,(log),...,(
1

lim)(

1

11

n
n

n
LW

n
n

wwp
n

LH

wwpwwp
n

LH

−=

−=

∞→

∈∞→ ∑

Cross-Entropy

• Comparing models
– Actual distribution unknown

– Use simplified model to estimate
• Closer match will have lower cross-entropy

),...,(log
1

lim),(

),...,(log),...,(
1

lim),(

1

11

n
n

n
LW

n
n

wwm
n

mpH

wwmwwp
n

mpH

−=

−=

∞→

∈∞→ ∑

Entropy of English
• Shannon’s experiment

– Subjects guess strings of letters, count guesses

– Entropy of guess seq = Entropy of letter seq

– 1.3 bits; Restricted text

• Build stochastic model on text & compute
– Brown computed trigram model on varied corpus

– Compute (pre-char) entropy of model

– 1.75 bits

Speech Recognition

• Goal:
– Given an acoustic signal, identify the sequence

of words that produced it
– Speech understanding goal:

• Given an acoustic signal, identify the meaning intended by the
speaker

• Issues:
– Ambiguity: many possible pronunciations,

– Uncertainty: what signal, what word/sense
produced this sound sequence

Decomposing Speech Recognition

• Q1: What speech sounds were uttered?
– Human languages: 40-50 phones

• Basic sound units: b, m, k, ax, ey, …(arpabet)

• Distinctions categorical to speakers
– Acoustically continuous

• Part of knowledge of language
– Build per-language inventory

– Could we learn these?

Decomposing Speech Recognition

• Q2: What words produced these sounds?
– Look up sound sequences in dictionary

– Problem 1: Homophones
• Two words, same sounds: too, two

– Problem 2: Segmentation
• No “space” between words in continuous speech

• “I scream”/”ice cream”, “Wreck a nice
beach”/”Recognize speech”

• Q3: What meaning produced these words?
– NLP (But that’s not all!)

Signal Processing

• Goal: Convert impulses from microphone
into a representation that
– is compact

– encodes features relevant for speech recognition

• Compactness: Step 1
– Sampling rate: how often look at data

• 8KHz, 16KHz,(44.1KHz= CD quality)

– Quantization factor: how much precision
• 8-bit, 16-bit (encoding: u-law, linear…)

(A Little More) Signal Processing

• Compactness & Feature identification
– Capture mid-length speech phenomena

• Typically “frames” of 10ms (80 samples)
– Overlapping

– Vector of features: e.g. energy at some frequency

– Vector quantization:
• n-feature vectors: n-dimension space

– Divide into m regions (e.g. 256)

– All vectors in region get same label - e.g. C256

Speech Recognition Model

• Question: Given signal, what words?

• Problem: uncertainty
– Capture of sound by microphone, how phones

produce sounds, which words make phones, etc

• Solution: Probabilistic model
– P(words|signal) =

– P(signal|words)P(words)/P(signal)

– Idea: Maximize P(signal|words)*P(words)
• P(signal|words): acoustic model; P(words): lang model

Probabilistic Reasoning over
Time

• Issue: Discrete models
– Speech is continuously changing

– How do we make observations? States?

• Solution: Discretize
– “Time slices”: Make time discrete

– Observations, States associated with time: Ot, Qt

Modelling Processes over Time

• Issue: New state depends on preceding states
– Analyzing sequences

• Problem 1: Possibly unbounded # prob tables
– Observation+State+Time

• Solution 1: Assume stationary process
– Rules governing process same at all time

• Problem 2: Possibly unbounded # parents
– Markov assumption: Only consider finite history

– Common: 1 or 2 Markov: depend on last couple

Language Model

• Idea: some utterances more probable

• Standard solution: “n-gram” model
– Typically tri-gram: P(wi|wi-1,wi-2)

• Collect training data
– Smooth with bi- & uni-grams to handle sparseness

– Product over words in utterance

Acoustic Model

• P(signal|words)
– words -> phones + phones -> vector quantiz’n

• Words -> phones
– Pronunciation dictionary lookup

• Multiple pronunciations?
– Probability distribution

» Dialect Variation: tomato

» +Coarticulation

– Product along path

t ow m
aa

ey
t ow

0.5

0.5

t
ow

m
aa

ey
t ow

0.5ax

0.50.2

0.8

Acoustic Model

• P(signal| phones):
– Problem: Phones can be pronounced differently

• Speaker differences, speaking rate, microphone

• Phones may not even appear, different contexts

– Observation sequence is uncertain

• Solution: Hidden Markov Models
– 1) Hidden => Observations uncertain

– 2) Probability of word sequences =>
• State transition probabilities

– 3) 1st order Markov => use 1 prior state

Hidden Markov Models (HMMs)

• An HMM is:
– 1) A set of states:

– 2) A set of transition probabilities:
• Where aij is the probability of transition qi -> qj

– 3)Observation probabilities:
• The probability of observing ot in state i

– 4) An initial probability dist over states:
• The probability of starting in state i

– 5) A set of accepting states

ko qqqQ ,...,, 1=

mnaaA ,...,01=

)(ti obB =

iπ

Acoustic Model

• 3-state phone model for [m]
– Use Hidden Markov Model (HMM)

– Probability of sequence: sum of prob of paths

Onset Mid End Final0.7

0.3 0.9

0.1

0.4

0.6

C1:
0.5

C2:
0.2

C3:
0.3 C3:

0.2
C4:
0.7

C5:
0.1 C4:

0.1
C6:
0.5

C6:
0.4

Transition probabilities

Observation probabilities

Viterbi Algorithm

• Find BEST word sequence given signal
– Best P(words|signal)

– Take HMM & VQ sequence
• => word seq (prob)

• Dynamic programming solution
– Record most probable path ending at a state i

• Then most probable path from i to end

• O(bMn)

Viterbi Code

Function Viterbi(observations length T, state-graph) returns best-path
Num-states<-num-of-states(state-graph)
Create path prob matrix viterbi[num-states+2,T+2]
Viterbi[0,0]<- 1.0
For each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s’ from s in state-graph

new-score<-viterbi[s,t]*at[s,s’]*bs’(ot)
if ((viterbi[s’,t+1]=0) || (viterbi[s’,t+1]<new-score))

then
viterbi[s’,t+1] <- new-score
back-pointer[s’,t+1]<-s

Backtrace from highest prob state in final column of viterbi[] & return

Enhanced Decoding

• Viterbi problems:
– Best phone sequence not necessarily most probable

word sequence
• E.g. words with many pronunciations less probable

– Dynamic programming invariant breaks on trigram

• Solution 1:
– Multipass decoding:

• Phone decoding -> n-best lattice -> rescoring (e.g. tri)

Enhanced Decoding: A*

• Search for highest probability path
– Use forward algorithm to compute acoustic match

– Perform fast match to find next likely words
• Tree-structured lexicon matching phone sequence

– Estimate path cost:
• Current cost + underestimate of total

– Store in priority queue

– Search best first

Modeling Sound, Redux

• Discrete VQ codebook values
– Simple, but inadequate

– Acoustics highly variable

• Gaussian pdfs over continuous values
– Assume normally distributed observations

• Typically sum over multiple shared Gaussians
– “Gaussian mixture models”

– Trained with HMM model

∑=
−

−′−

∑
1

)]()[(

||)2(

1
)(j jtjt oo

tj e
j

ob
µµ

π

Learning HMMs

• Issue: Where do the probabilities come from?

• Solution: Learn from data
– Trains transition (aij) and emission (bj) probabilities

• Typically assume structure

– Baum-Welch aka forward-backward algorithm
• Iteratively estimate counts of transitions/emitted

• Get estimated probabilities by forward comput’n
– Divide probability mass over contributing paths

Forward Probability

iN

N

i
iN

tj

N

i
ajjj

tjjj

ttt

aTTOP

obatt

Njoba

jqoooPi

)()()|(

)()1()(

1),()1(

)|,,..,,()(

1

2

1

2

1

21

∑
∑

−

=

−

=

==




 −=

<<=
==

ααλ

αα

α
λα

Backward Probability

)1()()()()|(

)1()()(

)(

),|,..,,()(

1

1

2
1

1

1

2

21

jj

N

j
jiN

jt

N

i
jiji

iNi

tTtti

obaTTOP

tobat

aT

jqoooPt

ββαλ

ββ

β
λβ

∑
∑

−

=

+

−

=

++

===

+=

=
==

Re-estimating

• Estimate transitions
from i->j

• Estimate
observations in j

∑ ∑
∑

−

= =

−

==

+
=

1

1 1

1

1

),(

),(
ˆ

)(

)1()()(
),(

T

t

N

j t

T

t t
ij

N

jtjiji
t

ji

ji
a

T

tobat
ji

τ

τ

α
βα

τ

∑
∑

=

===

===

T

t j

T

votst j

kj

jjt
j

t

t
vb

OP

tt

OP

OjqP
t

kt

1

..1

)(

)(
)(ˆ

)|(

)()(

)|(

)|,(
)(

σ

σ

λ
βα

λ
λσ

Does it work?

• Yes:
– 99% on isolate single digits

– 95% on restricted short utterances (air travel)

– 80+% professional news broadcast

• No:
– 55% Conversational English

– 35% Conversational Mandarin

– ?? Noisy cocktail parties

Speech Recognition as
Modern AI

• Draws on wide range of AI techniques
– Knowledge representation & manipulation

• Optimal search: Viterbi decoding

– Machine Learning
• Baum-Welch for HMMs

• Nearest neighbor & k-means clustering for signal id

– Probabilistic reasoning/Bayes rule
• Manage uncertainty in signal, phone, word mapping

• Enables real world application

