
Hidden Markov Models:
Decoding & Training

Natural Language Processing

CMSC 35100

April 24, 2003

Agenda

• Speech Recognition
– Hidden Markov Models

• Uncertain observations

• Recognition: Viterbi, Stack/A*

• Training the model: Baum-Welch

Speech Recognition Model

• Question: Given signal, what words?

• Problem: uncertainty
– Capture of sound by microphone, how phones

produce sounds, which words make phones, etc

• Solution: Probabilistic model
– P(words|signal) =

– P(signal|words)P(words)/P(signal)

– Idea: Maximize P(signal|words)*P(words)
• P(signal|words): acoustic model; P(words): lang model

Hidden Markov Models (HMMs)

• An HMM is:
– 1) A set of states:

– 2) A set of transition probabilities:
• Where aij is the probability of transition qi -> qj

– 3)Observation probabilities:
• The probability of observing ot in state i

– 4) An initial probability dist over states:
• The probability of starting in state i

– 5) A set of accepting states

ko qqqQ ,...,, 1=

mnaaA ,...,01=

)(ti obB =

iπ

Acoustic Model

• 3-state phone model for [m]
– Use Hidden Markov Model (HMM)

– Probability of sequence: sum of prob of paths

Onset Mid End Final0.7

0.3 0.9

0.1

0.4

0.6

C1:
0.5

C2:
0.2

C3:
0.3 C3:

0.2
C4:
0.7

C5:
0.1 C4:

0.1
C6:
0.5

C6:
0.4

Transition probabilities

Observation probabilities

Viterbi Algorithm

• Find BEST word sequence given signal
– Best P(words|signal)

– Take HMM & VQ sequence
• => word seq (prob)

• Dynamic programming solution
– Record most probable path ending at a state i

• Then most probable path from i to end

• O(bMn)

Viterbi Code

Function Viterbi(observations length T, state-graph) returns best-path
Num-states<-num-of-states(state-graph)
Create path prob matrix viterbi[num-states+2,T+2]
Viterbi[0,0]<- 1.0
For each time step t from 0 to T do

for each state s from 0 to num-states do
for each transition s’ from s in state-graph

new-score<-viterbi[s,t]*at[s,s’]*bs’(ot)
if ((viterbi[s’,t+1]=0) || (viterbi[s’,t+1]<new-score))

then
viterbi[s’,t+1] <- new-score
back-pointer[s’,t+1]<-s

Backtrace from highest prob state in final column of viterbi[] & return

Enhanced Decoding

• Viterbi problems:
– Best phone sequence not necessarily most probable

word sequence
• E.g. words with many pronunciations less probable

– Dynamic programming invariant breaks on trigram

• Solution 1:
– Multipass decoding:

• Phone decoding -> n-best lattice -> rescoring (e.g. tri)

Enhanced Decoding: A*

• Search for highest probability path
– Use forward algorithm to compute acoustic match

– Perform fast match to find next likely words
• Tree-structured lexicon matching phone sequence

– Estimate path cost:
• Current cost + underestimate of total

– Store in priority queue

– Search best first

Modeling Sound, Redux

• Discrete VQ codebook values
– Simple, but inadequate

– Acoustics highly variable

• Gaussian pdfs over continuous values
– Assume normally distributed observations

• Typically sum over multiple shared Gaussians
– “Gaussian mixture models”

– Trained with HMM model

∑=
−

−′−

∑
1

)]()[(

||)2(

1
)(j jtjt oo

tj e
j

ob
µµ

π

Learning HMMs

• Issue: Where do the probabilities come from?

• Solution: Learn from data
– Trains transition (aij) and emission (bj) probabilities

• Typically assume structure

– Baum-Welch aka forward-backward algorithm
• Iteratively estimate counts of transitions/emitted

• Get estimated probabilities by forward comput’n
– Divide probability mass over contributing paths

Forward Probability

iN

N

i
iN

tj

N

i
ijij

jjj

aTTOP

obatt

Njoba

)()()|(

)()1()(

1),()1(

1

2

1

2

11

∑
∑

−

=

−

=

==




 −=

<<=

ααλ

αα

α

Where α is the forward probability, t is the time in utterance,
i,j are states in the HMM, aij is the transition probability,
bj(ot) is the probability of observing ot in state bj
N is the final state, T is the last time, and 1 is the start state

Backward Probability

)1()()()()|(

)1()()(

)(

1

1

2
11

1

1

2

jj

N

j
jN

jt

N

i
jiji

iNi

obaTTOP

tobat

aT

ββαλ

ββ

β

∑
∑

−

=

+

−

=

===

+=

=

Where β is the backward probability, t is the time in utterance,
i,j are states in the HMM, aij is the transition probability,
bj(ot) is the probability of observing ot in state bj
N is the final state, T is the last time, and 1 is the start state

Re-estimating

• Estimate transitions
from i->j

• Estimate
observations in j

∑ ∑
∑

−

= =

−

==

+
=

1

1 1

1

1

),(

),(
ˆ

)(

)1()()(
),(

T

t

N

j t

T

t t
ij

N

jtjiji
t

ji

ji
a

T

tobat
ji

τ

τ

α
βα

τ

∑
∑

=

===

===

T

t j

T

votst j

kj

jjt
j

t

t
vb

OP

tt

OP

OjqP
t

kt

1

..1

)(

)(
)(ˆ

)|(

)()(

)|(

)|,(
)(

σ

σ

λ
βα

λ
λσ

ASR Training

• Models to train:
– Language model: typically tri-gram
– Observation likelihoods: B
– Transition probabilities: A
– Pronunciation lexicon: sub-phone, word

• Training materials:
– Speech files – word transcription
– Large text corpus
– Small phonetically transcribed speech corpus

Training

• Language model:
– Uses large text corpus to train n-grams

• 500 M words

• Pronunciation model:
– HMM state graph

– Manual coding from dictionary
• Expand to triphone context and sub-phone models

HMM Training

• Training the observations:
– E.g. Gaussian: set uniform initial mean/variance

• Train based on contents of small (e.g. 4hr) phonetically
labeled speech set (e.g. Switchboard)

• Training A&B:
– Forward-Backward algorithm training

Does it work?

• Yes:
– 99% on isolate single digits

– 95% on restricted short utterances (air travel)

– 80+% professional news broadcast

• No:
– 55% Conversational English

– 35% Conversational Mandarin

– ?? Noisy cocktail parties

Speech Synthesis

• Text to speech produces
– Sequence of phones, phone duration, phone pitch

• Most common approach:
– Concatentative synthesis

• Glue waveforms together

• Issue: Phones depend heavily on context
– Diphone models: mid-point to mid-point

• Captures transitions, few enough contexts to collect (1-2K)

Speech Synthesis: Prosody

• Concatenation intelligible but unnatural
• Model duration and pitch variation

– Could extract pitch contour directly
– Common approach: TD-PSOLA

• Time-domain pitch synchronous overlap and add
– Center frames around pitchmarks to next pitch period
– Adjust prosody by combining frames at pitchmarks for

desired pitch and duration
– Increase pitch by shrinking distance b/t pitchmarks
– Can be squeaky

Speech Recognition as
Modern AI

• Draws on wide range of AI techniques
– Knowledge representation & manipulation

• Optimal search: Viterbi decoding

– Machine Learning
• Baum-Welch for HMMs

• Nearest neighbor & k-means clustering for signal id

– Probabilistic reasoning/Bayes rule
• Manage uncertainty in signal, phone, word mapping

• Enables real world application

