
Quick Speech Synthesis

CMSC 35100
Natural Language Processing

April 29, 2003

Speech Synthesis

• Text to speech produces
– Sequence of phones, phone duration, phone pitch

• Most common approach:
– Concatentative synthesis

• Glue waveforms together

• Issue: Phones depend heavily on context
– Diphone models: mid-point to mid-point

• Captures transitions, few enough contexts to collect (1-2K)

Speech Synthesis: Prosody

• Concatenation intelligible but unnatural
• Model duration and pitch variation

– Could extract pitch contour directly
– Common approach: TD-PSOLA

• Time-domain pitch synchronous overlap and add
– Center frames around pitchmarks to next pitch period
– Adjust prosody by combining frames at pitchmarks for

desired pitch and duration
– Increase pitch by shrinking distance b/t pitchmarks
– Can be squeaky

• Higher-level stress, accents, boundaries
– ToBI model: align with synthetic TTS content

Parsing I:
CFGs & the Earley Parser

CMSC 35100
Natural Language Processing

April 29, 2003

Roadmap

• Sentence Structure
– Motivation: More than a bag of words

• Representation:
– Context-free grammars

• Chomsky hierarchy

• Parsing:
– Accepting & analyzing
– Combining top-down & bottom-up constraints

• Efficiency

– Earley parsers

More than a Bag of Words

• Sentences are structured:
– Impacts meaning:

• Dog bites man vs man bites dog

– Impacts acceptability:
• Dog man bites

• Composed of constituents
– E.g. The dog bit the man on Saturday.

• On Saturday, the dog bit the man.

Sentence-level Knowledge:
Syntax

• Language models
– More than just words: “banana a flies time

like”
– Formal vs natural: Grammar defines

language
Chomsky
Hierarchy

Recursively
Enumerable

=Any

Context = AB->BA
SensitiveContext A-> aBc

Free

Regular S->aS
Expression a*b*

nnn cbannba

Representing Sentence Structure

• Not just FSTs!
– Issue: Recursion

• Potentially infinite: It’s very, very, very,…..

• Capture constituent structure
– Basic units
– Subcategorization (aka argument structure)
– Hierarchical

Representation:
Context-free Grammars

• CFGs: 4-tuple
– A set of terminal symbols: Σ
– A set of non-terminal symbols: N
– A set of productions P: of the form A -> α

• Where A is a non-terminal and α in (Σ U N)*

– A designated start symbol S

• L = W|w in Σ* and S=>*w
– Where S=>*w means S derives w by some seq

Representation:
Context-free Grammars

• Partial example
– Σ: the, cat, dog, bit, bites, man
– N: NP, VP, AdjP, Nominal
– P: S-> NP VP; NP -> Det Nom; Nom-> N Nom|N
– S S

NP VP

Det Nom V NP

N Det Nom

N

The dog bit the man

Grammar Equivalence and Form

• Grammar equivalence
– Weak: Accept the same language, May produce

different analyses
– Strong: Accept same language, Produce same

structure

• Canonical form:
– Chomsky Normal Form (CNF)

• All CFGs have a weakly equivalent CNF

• All productions of the form:
– A-> B C where B,C in N, or

– A->a where a in Σ

Parsing Goals

• Accepting:
– Legal string in language?

• Formally: rigid
• Practically: degrees of acceptability

• Analysis
– What structure produced the string?

• Produce one (or all) parse trees for the string

Parsing Search Strategies

• Top-down constraints:
– All analyses must start with start symbol: S
– Successively expand non-terminals with RHS
– Must match surface string

• Bottom-up constraints:
– Analyses start from surface string
– Identify POS
– Match substring of ply with RHS to LHS
– Must ultimately reach S

Integrating Strategies

• Left-corner parsing:
– Top-down parsing with bottom-up constraints
– Begin at start symbol
– Apply depth-first search strategy

• Expand leftmost non-terminal
• Parser can not consider rule if current input can

not be first word on left edge of some derivation
• Tabulate all left-corners for a non-terminal

Issues

• Left recursion
– If the first non-terminal of RHS is recursive ->

• Infinite path to terminal node
• Could rewrite

• Ambiguity: pervasive (costly)
– Lexical (POS) & structural

• Attachment, coordination, np bracketing

• Repeated subtree parsing
– Duplicate subtrees with other failures

Earley Parsing

• Avoid repeated work/recursion problem
– Dynamic programming

• Store partial parses in “chart”
– Compactly encodes ambiguity

• O(N^3)

• Chart entries:
– Subtree for a single grammar rule
– Progress in completing subtree
– Position of subtree wrt input

Earley Algorithm

• Uses dynamic programming to do parallel
top-down search in (worst case) O(N3) time

• First, left-to-right pass fills out a chart with
N+1 states
– Think of chart entries as sitting between words in

the input string keeping track of states of the
parse at these positions

– For each word position, chart contains set of
states representing all partial parse trees
generated to date. E.g. chart[0] contains all
partial parse trees generated at the beginning of
the sentence

Chart Entries

• predicted constituents

• in-progress constituents

• completed constituents

Represent three types of constituents:

Progress in parse represented
by Dotted Rules

• Position of • indicates type of constituent
• 0 Book 1 that 2 flight 3

• S → • VP, [0,0] (predicted)

• NP → Det • Nom, [1,2] (in progress)

• VP →V NP •, [0,3] (completed)

• [x,y] tells us what portion of the input is spanned
so far by this rule

• Each State s i:
<dotted rule>, [<back pointer>,<current
position>]

S → • VP, [0,0]
– First 0 means S constituent begins at the start of

input
– Second 0 means the dot here too
– So, this is a top-down prediction

NP → Det • Nom, [1,2]
– the NP begins at position 1
– the dot is at position 2
– so, Det has been successfully parsed
– Nom predicted next

0 Book 1 that 2 flight 3

0 Book 1 that 2 flight 3
(continued)

VP → V NP •, [0,3]
– Successful VP parse of entire input

Successful Parse

• Final answer found by looking at last entry
in chart

• If entry resembles S → α • [nil,N] then
input parsed successfully

• Chart will also contain record of all
possible parses of input string, given the
grammar

Parsing Procedure for the
Earley Algorithm

• Move through each set of states in order,
applying one of three operators to each
state:
– predictor: add predictions to the chart
– scanner: read input and add corresponding state

to chart
– completer: move dot to right when new

constituent found

• Results (new states) added to current or next
set of states in chart

• No backtracking and no states removed:
keep complete history of parse

States and State Sets

• Dotted Rule s i represented as
<dotted rule>, [<back pointer>, <current
position>]

• State Set S j to be a collection of states si with
the same <current position>.

Earley Algorithm from Book

Earley Algorithm (simpler!)

1. Add Start → · S, [0,0] to state set 0
Let i=1

2. Predict all states you can, adding new predictions to
state set 0

3. Scan input word i—add all matched states to state set Si.
Add all new states produced by Complete to state set Si
Add all new states produced by Predict to state set Si
Let i = i + 1
Unless i=n, repeat step 3.

4. At the end, see if state set n contains Start → S · , [nil,n]

3 Main Sub-Routines of
Earley Algorithm

• Predictor: Adds predictions into the chart.
• Completer: Moves the dot to the right

when new constituents are found.
• Scanner: Reads the input words and enters

states representing those words into the
chart.

Predictor

• Intuition: create new state for top-down
prediction of new phrase.

• Applied when non part-of-speech non-
terminals are to the right of a dot: S → • VP
[0,0]

• Adds new states to current chart
– One new state for each expansion of the non-

terminal in the grammar
VP → • V [0,0]
VP → • V NP [0,0]

• Formally:
Sj: A → α · B β, [i,j]
Sj: B → · γ, [j,j]

Scanner

• Intuition: Create new states for rules matching
part of speech of next word.

• Applicable when part of speech is to the right of
a dot: VP → • V NP [0,0] ‘Book…’

• Looks at current word in input
• If match, adds state(s) to next chart

VP → V • NP [0,1]
• Formally:

Sj: A → α · B β, [i,j]
Sj+1: A → α B · β, [i,j+1]

Completer
• Intuition: parser has finished a new phrase,

so must find and advance states all that
were waiting for this

• Applied when dot has reached right end of
rule
NP → Det Nom • [1,3]

• Find all states w/dot at 1 and expecting an
NP: VP → V • NP [0,1]

• Adds new (completed) state(s) to current
chart : VP → V NP • [0,3]

• Formally: Sk: B → δ · , [j,k]
Sk: A → α B · β, [i,k],
where: Sj: A → α · B β, [i,j].

Example: State Set S0 for
Parsing “Book that flight”

using Grammar G0

Example: State Set S1 for
Parsing “Book that flight”

VP→ • V and VP → • V NP are both passed to
Scanner, which adds them to Chart[1], moving
dots to right

Scanner

Scanner

Prediction of Next Rule

• When VP → V • is itself processed by
the Completer, S → VP • is added to
Chart[1] since VP is a left corner of S

• Last 2 rules in Chart[1] are added by
Predictor when VP → V • NP is
processed

• And so on….

Last Two States

Scanner

Scanner
Scanner

How do we retrieve the
parses at the end?

• Augment the Completer to add pointers to
prior states it advances as a field in the
current state
– i.e. what state did we advance here?
– Read the pointers back from the final state

