
CS38600-1 Complexity Theory A Spring 2003

Lecture 5 : Littlewood-Richardson Rule
Lecturer: Ketan Mulmuley Scribe: Murali Krishnan Ganapathy

Abstract

In this lecture, we discuss the Littlewood Richardson rule which allows us to determine the multiplicity
of each irreducible representation Vλ in Vα ⊗ Vβ , where Vθ is the irreducible representation of SLn

corresponding to the partition θ with at most n parts.

5.1 Recall

All the finite dimensional representations of SLn are the Weyl modules Vλ. Here λ can be any partition
with at most n parts. Unlike in the finite group case, the number of irreducible representations are infinite.

5.2 The Littlewood Richardson coefficients

For partitions α, β, we know that sαsβ =
∑

λ Nαβλsλ, for suitable coefficients Nαβλ. Here λ varies over
all partitions of |α| + |β|. This follows, since the Schur polynomials form a basis of the vector space of all
symmetric homogenous polynomials of appropriate degree.

The same coefficients Nαβλ also appear in the decomposition of Vα ⊗ Vβ , through the formula

Vα ⊗ Vβ =
∑

λ

NαβλVλ

In particular this shows that even though SLn has infinitely many irreducible representations, only a small
number of them actually occur in the representation Vα ⊗ Vβ , since Nαβλ = 0 if |α|+ |β| 6= |λ|.

5.3 Combinatorial evaluation of Nαβλ

Fix any Young Diagram α. A β1 expansion of α is obtained by appending α to get a new Young diagram
using β1 1’s so that no two 1’s are in the same column. Similarly a β2 expansion is obtained by appending
β2 2’s so that no two are in the same column.

Definition 5.1 Let α, β = (β1 ≥ · · · ≥ βk) be two partitions. A β expansion of α is defined to be a βk

expansion of a βk−1 expansion of a . . . β2 expansion of a β1 expansion of α. Such an expansion is called
strict, if when reading right to left, top down, we have that ∀p ∈ {1, . . . , k − 1} and all positions t, the
number of p’s up to position t is ≥ the number of (p + 1)’s up to position t.

Theorem 5.2 Nαβλ equals the number of strict β-expansions of α of shape λ.

5-1

5-2 Lecture 5: Littlewood-Richardson Rule

Hence we have that

Vα ⊗ Vβ =
⊕
E

Vsh(E)

where the direct sum is taken over over all strict β expansions of α, and sh(E) refers to the shape of E, i.e.
the Young Diagram underlying E.

This immediately gives an NP algorithm to check if Nαβλ > 0. On input α, β, λ, we check if |λ| = |α|+ |β|
and guess a tableaux E of size |λ|. Then we verify that E is a strict β expansion of α, and if so we accept.
It is easy to see that this algorithm is in NP if the input were specified in unary, i.e. input size = O(|λ|).
In fact, even when λ is compressed, i.e. has input size O(

∑
log λi), if λ = (λ1 ≥ λ2 ≥ . . .), it can be shown

that the above algorithm is still in NP. In particular, we have shows that the computation of Nαβλ lies in
#P and has a P#P decomposition formula without alternating signs.

Theorem 5.3 Deciding if Vλ occurs in the decomposition of Vα ⊗ Vβ is polynomial time decidable, even if
input is compressed.

Proof: If there exists a β-expansion of α of shape λ, then there is a greedy strict β-expansion of α of shape
λ. The greedy algorithm first carves out α from the shape λ (if unable to do, then return false).

Assume we have filled up the remaining squares with β11’s, β22’s, . . . βpp’s. Processing the squares top to
bottom and right to left. Find the first empty square whose column does not contain a p. Fill that box with
a p and continue filling the remaining βp − 1p’s.

If at any stage we are unable to find a empty square satisfying the strictness condition (i.e. column does not
already have a p), then it is easy to see that there is no strict β-expansion of α of shape λ.

Clearly this gives a P-time computable algorithm assuming the input is in unary, i.e. not compressed. The
same algorithm can be modified to handle the case when the input is compressed. In this case, we fill up the
empty squares in blocks, i.e. many at a time.

Conjecture 5.4 (The above problem for Sn) The problem of deciding if Sλ occurs in the representation
Sα ⊗ Sβ is P-computable.

Fact 5.5 The above problem for SOn, SP2n, and other reductive groups are P-computable.

5.4 An effective version of Vα ⊗ Vβ =
∑

λ NαβλVλ

Since Vα ⊗ Vβ =
∑

λ NαβλVλ as SLn-modules, the same holds in particular as complex vector spaces. A
natural vector space basis of Vα is given by Iα = {T : T is a semi-standard tableaux of shape α}. So from
the above result, we know that the sets

Iα × Iβ and
·⋃
λ

I
Nαβλ

λ

are in bijective correspondence with each other. We now show a natural P-computable correspondence
between the two sets.

Lecture 5: Littlewood-Richardson Rule 5-3

Theorem 5.6 (Polynomial time decomposition rule) There exists a P-computable correspondence
ϕ : Iα × Iβ ⇐⇒ ∪λI

Nαβλ

λ . Moreover ϕ−1 is also P-computable.

5.4.1 RSK Correspondence

Before we get into the proof, we need to define the RSK Correspondence:

Given a sequence S of symbols {1, . . . , n} of length ` = `(S), we define RSK(S) = (P,Q), where P is a
semi-standard tableaux over {1, . . . , n} of shape λ, where |λ| = ` and Q is a standard tableaux over [1, . . . , `]
also of shape λ. The construction of P and Q proceeds as follows:

Let S = Rk, where R is a sequence of length one less than S and k is the last symbol occurring in S. By
induction hypothesis, assume that we already know RSK(R) = (P,Q). The Algorithm starts with P and Q
and inserts k into P and let it propagate down modifying P along the way. Q records the position at which
k settles down finally. The propagation of k occurs by executing Bump(first row,k).

Bump(x’th row,v): If all the entries of the x’th row of P is ≤ v, append v to the x’th row. Otherwise, let i
be the left most entry of the x’th row which is larger than v. Replace i with v and bump out i. Now execute
Bump(x+1’st row,i). Since the number of rows in P in bounded, eventually this procedure will encounter
an empty row, and become the first entry in that row.

For Q, create a box where the new box in P was created and fill it with ` = `(S), thus noting the time at
which this box was created in P .

It is easy to see that this mapping can be reversed as follows. Starting with Q, we know the position of ` is
the box where the last symbol was added to P . If that is not the first row of P , we know this symbol was
bumped out of the previous row. Applying a reverse bump procedure, we can find out which symbol replaced
in the previous row. Repeat the above reverse bump with the new symbol we have identified. Eventually
we will reverse bump a symbol out of the first row. This is the last symbol of S.

Repeating the above process, we can recover all the symbols of S. It is also easy to see that this can be
implemented in polynomial time, even if the input sequence is encoded.

5.4.2 Proof of Theorem 5.6

Let Tα ∈ Iα, Tβ ∈ Iβ be given. Denote by Cα the canonical standard tableaux of shape α, i.e. numbers
1 . . . n increasing left to right top to bottom. Similarly for Cβ .

Let Sα = RSK−1(Tα, Cα) and Sβ = RSK−1(Tβ , Cβ), and define ϕ(Tα, Tβ) = RSK(Sα ◦Sβ), where ◦ is the
concatenation operator. So ϕ(Tα, Tβ) = (Pλ, Qλ), where Pλ ∈ Iλ and Qλ is thought of as the index in a set
of size Nαβλ.

We then complete the proof by showing that if (X, Qλ) ∈ =(ϕ), then so is (Y, Qλ) for any Y ∈ Iλ. This is
left as an exercise to the reader. This completes the proof.

As a consequence we have

Vα ⊗ Vβ =
∑

(Tα,Tβ)

Vλ(ϕ(Tα,Tβ))

where the sum is taken over semi-standard tableaux’s such that ϕ(Tα, Tβ) = (Cλ, ·), where Cλ is the canonical
standard tableaux of shape λ. Note that the original result was for the vector space basis, and now we have

5-4 Lecture 5: Littlewood-Richardson Rule

it for the Weyl modules themselves. That is why we had to restrict the first component of ϕ(Tα, Tβ) to be
some fixed standard tableaux.

The above is a P#P formula without alternating signs. Similar formulae are known for the Specht modules
as well as for the Plethysm problem.

