
The BOL IR

Draft of October 21, 2004

1 Introduction

BOL is a normalized extendedλ-calculus that serves as the intermediate representation (IR) of the
MOBY compiler. It has a weak, but simple, type system that serves as a guide for optimization and
code generation. This report describes the dynamic and static semantics of BOL. It is meant to serve
as documentation for MOBY compiler.

The following table summarizes the SML types used to represent BOL types and terms and
where they are defined and described:

Type Module Description Section
var BOL BOL variables 5
exp BOL BOL expressions labeled by program points 4.1

term BOL unlabeled expressions 4.1
lambda BOL named function definition 4.2

rhs BOL right-hand-side of binding 4.3
primop PrimOps primitive operations 6

ppt ProgPt program points
kind BOLTypes kind of a BOL type 2.1

ty BOLTypes BOL type 2.2 – 2.5
field BOLTypes field descriptor for BOL struct 2

c_prototype BOLTypes type of C function 2

2 BOL types

2.1 Kinds

The BOL types are organized into a hierarchy bykind; there are four distinct kinds of BOL types:

1. Word kind (W) types are those that can be stored in a general-purpose machine register on
the host processor.

2. Variable kind types (V) are those that can be assigned to a BOL variable.

3. Memory kind types (M) are those types that describe the layout of memory.

4. Type kind types (Type) include all types.

We useKind = {W,V,M,Type} for the set of kinds andκ ∈ Kind. The kinds are ordered
under set inclusion as follows:

W ⊂ V ⊂ M ⊂ Type

i.e., a type of kindW also has kindsV, M, andType. A kind environmentKE : (Base ∪
TyVar) fin→ Kind maps base types and type variables to kinds. The mapping of base types is
architecture (and compiler) specific. For example, the type of 64-bit integers (long) has kindW on
64-bit machines, but kindV on 32-bit machines.

2.2 Kind W types

The following types haveW kind and may be mapped to a general-purpose register:

T_Any

a word-sized value of unknown type; we use the syntaxany to denote this type.

T_Bool

a boolean; we use the syntaxbool to denote this type.

T_Enum of {lo : word, hi : word }
a small integer (16-bit) in the range[lo , hi]. When lo is equal tohi , then the type is a
singletontype. We write(lo ..hi) to denote the typeT_Enum{lo, hi }.

T_Integer

arbitrary precision integers (represented by a pointer); we use the syntaxinteger to denote
this type.

2

T_Wrap of ty

a wrapped value (the type argument will be one of: int, long, float, double, or extended). We
use the syntaxwrap(τ) to denote the typeT_Wrap(τ) .

T_Addr of ty

the address of memory with the given type. The memory is guaranteed to be outside the
MOBY heap. We use the syntax&τ to denote the typeT_Addr(τ) .

T_Ptr of ty

a pointer to memory with the given type. The memory may be in the MOBY heap. We use
the syntax∗τ to denote the typeT_Ptr(τ) .

T_PtrOrEnum of {ptrTy : ty, enumTy : ty }
a value that is either a pointer to memory withptrTy type or is an enumeration (enumTy
specifies the range). We use the syntax∗ptrTy + (lo ..hi) to denote the type

T_PtrOrEnum{ptrTy, enumTy=T_Enum{lo, hi}}

T_FunPtr of {dom : ty list, rng : ty list }
a function with the given domain and range.

T_CodePtr of {dom : ty list, rng : ty list }
the address of machine code for a function with the given domain and range. Values of this
type are introduced as part of closure conversion.

T_ContPtr of ty list

a BOL continuation with the given argument types.

T_Label of ty list

the address of an internal fragment in a cluster with the given argument types. Values of this
type are introduced as part of closure conversion.

T_CFun of c_prototype

the address of a C function with the given prototype.

T_CStruct of ty

the address of memory containing a C struct value. This type is used to specify struct param-
eters and results in C function prototypes.

2.3 Kind W or V types

There are five numeric types whos representation (i.e., kind) depends on the target architecture and
compiler configuration. These types have eitherW kind, when they can be mapped into general-
purpose registers orV kind when they cannot be so mapped. The types are:

3

T_Int

32-bit 2’s complement integers; we useint to denote this type.

T_Long

64-bit 2’s complement integers; we uselong to denote this type.

T_Float

32-bit IEEE single-precision floating-point numbers; we usefloat to denote this type.

T_Double

64-bit IEEE double-precision floating-point numbers; we usedouble to denote this type.

T_Extended

IEEE extended double-precision floating-point numbers; we useextended to denote this
type.

2.4 Kind M types

T_Data

a region of memory of unknown size.

T_Object

a region of memory used to represent a MOBY object.

T_Struct of {sz : int, align : int, data : field list }
a region of memory with a known size, alignment, and layout.

T_Vector of {len : int option, elemSz : int, ty : ty }
an immutable vector of elements with the given size and type. When thelen field is note
NONE, then the length of the vector is known.

T_Array of {len : int option, elemSz : int, ty : ty }
a mutable array of elements with the given size and type. When thelen field is noteNONE,
then the length of the vector is known.

T_Union of ty list

an untagged union of types.

T_TaggedUnion of (int * ty) list

4

2.5 Kind Type types

T_Void

This type is used to denote the Cvoid type in function prototypes.

3 Representation of Moby types

This section describes how common MOBY types are mapped to BOL types. It is always the case
that the BOL type corresponding to a MOBY type will haveW kind.

Bool is represented by thebool type.

Char is represented by(0..255).

Int is either represented bywrap(int) or by int.

Long is either represented bywrap(long) or by long.

Integer is represented byinteger.

Float is represented bywrap(float).

Double is represented bywrap(double).

Extended is represented bywrap(extended).

3.1 Sequence types

MOBY sequence types, such asArray andString , have a two-level representation in BOL. There
is a two-word header consisting of a 32-bit integer length and a pointer to the data object.1

3.2 TheList type constructor

The MOBY List type constructor is defined as

datatype List(t) { Nil, Cons of (t, List(t)) }

TheNil value is represented by the value0, while theCons values are represented by pointers to
two-word pairs. The BOL type for this representation is∗τ + (0..0), whereτ is the type of the list
elements (any when the type is unknown).

1On 64-bit machines, there is 32-bits of padding between the length and the data pointer to ensure 64-bit alignment
of the data pointer.

5

4 The BOL representation

Inside the MOBY compiler, BOL expressions are represented using the following datatypes:

datatype exp = E_Pt of (ProgPt.ppt * term)
and term = ...
and rhs = ...

The exp type is a term tagged with a unique program point. Program points serve as labels for
those analyses that need to track positions in the code. Therhs (right-hand-side) type covers terms
that cannot appear in a tail context.

4.1 Expression forms

Theterm type has a number of constructors; we call theseexpression forms(ignoring the lack of a
program-point label).

E_Let of (var list * exp * exp)

binds the variables to the results of the first expression in the scope of the second expression.
The general syntax of this form is

let (x1, . . . , xn) = e1; e2

When the number of bound variables is one, we write

let x = e1; e2

and when there are no bound variables, we write

do e1; e2

E_Stmt of (var list * rhs * exp)

binds the variables to the results of the right-hand-side in the scope of the expression. The
syntax of this form is the same as forE_Let .

E_StackAlloc of (var * int * int * exp)

binds the variable to reserved space in the stack frame. The first integer specifies the size (in
bytes) of the space and the second specifies the alignment. The scope of the binding and the
extent of the reserved space is the expression. The syntax for this form is

stackalloc x = <sz , align>; e2

E_Fun of (lambda list * exp)

Binds a collection of mutually recursive function definitions. The scope of the function names
includes both the function bodies and the expression. We use the syntax

6

fun f1 (x1,1, . . . , x1,n1) = e1

and · · ·
and fk (xk,1, . . . , xk,nk

) = ek;
e

for the term

E_Fun([(f1, [x1,1, . . . , x1,n1], e1), . . ., (fk, [xk,1, . . . , xk,nk
], ek)], e)

E_Cont of (lambda * exp)

Binds a BOL continuation with the expression as its scope. Note that the lifetime of the
continuation is also its scope!

E_If of (var * exp * exp)

tests the variable and if it is true, the evaluate the first expression, otherwise evaluate the
second expression. The syntax for this form is

if x then e1 else e2

E_Switch of (var * (int * exp) list * exp option)

Tests the variable against the integer labels of the list of cases; the third argument is the
optional default case. The cases should be in increasing numeric order and the default case
should be present unless the variable is guaranteed to always have one of the case labels as its
values. We use the syntax

switch x { case i1: e1 · · · case in: en }

for the term

E_Switch(x, [(i1, e1), . . ., (in, en)], NONE)

and

switch x { case i1: e1 · · · case in: en default : e }

for the term

E_Switch(x, [(i1, e1), . . ., (in, en)], SOME(e))

E_Apply of (var * var list)

applies the function named by the first variable to the arguments named by the list of variables.
We use the syntaxcall f (args) for E_Apply(f , args) .

E_Throw of (var * var list)

applies the continuation named by the first variable to the arguments named by the list of
variables. We use the syntaxthrow k(args) for E_Throw(k, args) .

E_Ret of var list

returns the values bound to the variables. Note that the term “return” does not connote
control-flow.

7

4.2 Lambda abstractions

The typelambda is used to represent both functions and continuations. It is defined as:

type lambda = (var * var list * exp)

where the first variable is the name of the function (there are no anonymous functions in BOL), the
list of variables are the formal parameters, and the expression is the function body.

4.3 Right-hand-side forms

E_Cast of (var * BOLTypes.ty)

cast the value bound to the variable to the given type (which must have the same kind). We
use the notation(τ) x for E_Cast(x, τ)

E_Select of (int * var)

selects the the specified field from the record bound to the variable. We use the notationx#i
for E_Select(i, x) .

E_Update of (int * var * var)

updates the specified field from the record bound to the first variable with the value bound to
the second variable. This form has no results (i.e., zero-arity). We use the notationx#i := y
for E_Update(i, x, y) .

E_Alloc of (BOLTypes.ty * var list)

allocates and initialized a record in the heap. The type specifies the record’s layout and the
list of variables provide the initial values for record’s fields.

E_AllocObj of (BOLTypes.ty * var)

allocate memory for an object. The type specifies the layout of the object’s fields and the
variable is bound to the method suite.

E_Wrap of var

wrap (box) the value bound to the variable. We use the syntaxwrap (x) for E_Wrap(x) .

E_Unwrap of var

unwrap (unbox) the boxed value bound to the variable. We use the syntaxunwrap (x) for
E_Unwrap(x) .

E_IConst of IntInf.int

an integer constant.

8

E_SConst of string

a string constant. Note that this is the string data and not the representation of a MOBY string
literal.

E_FConst of FloatLit.float

a floating-point constant.

E_BConst of bool

a boolean constant.

E_StaticAddr of var

the address of the static location named by the variable.

E_StaticRef of var

the contents of the static location named by the variable.

E_Prim of var primop

applies a primitive operator to its arguments. The primitive operators are described in Sec-
tion 6.

E_Slot of slot_exp

E_DictFieldSel of (var * member_label)

E_DictMethSel of (var * member_label)

E_FieldGet of (var * var)

E_FieldPut of (var * var * var)

E_MethGet of (var * var)

E_ApplyCont of (var * var list)

Partially apply a continuation to its arguments (but do not transfer control). This operation
has the effect of turning a continuation with arguments into one without.

E_ThdCreate of var

9

E_ThdGetTask

E_ThdGetId of var

E_ThdLockSelf of var

E_ThdEnqueue of (var * var * var)

E_ThdEnqueueSelf of (var * var)

E_ThdDequeue of var

E_ThdTerminate of var

E_CCall of (var * var list)

calls the C function named by the first variable on the arguments named by the variable list.
We use the syntaxccall f (args) for E_CCall(f , args) .

4.4 Creating BOL expressions

TheBOLmodule provides constructor functions for the various expression forms (e.g., mkLet to
create anE_Let expression form). These constructor functions take care of labeling the term with
a unique program point. TheCensus module provides similar functions, except that they maintain
the additional invariants defined by the census, such as variable binding information.

5 BOL variables

The representation of BOL variables has the SML typevar , which is defined in theBOLmodule
as follows:

10

datatype var = V of {
id : Word.word,
name : string option,
src : Var.var option,
binding : var_binding ref,
ty : BOLTypes.ty,
useCnt : int ref,
props : PropList.holder

}

The fields of this representation are used as follows:

id a unique ID that can be used for identity testing, ordering, or hashing.

name if present, a symbolic name for the variable.

src if present, then this BOL variable corresponds to the specified typed AST variable.

binding the binding that defines this variable.

ty this variable’s type.

useCnt the number of times that this variable is used. For functions and continuations, this count
includes applications.

props a holder for name/value pairs (i.e., an association list).

6 Primitive operators

Machine-level operations are represented in BOL as “primops” (primitive operations). Theprimop
datatype is defined in thePrimOps structure. This datatype is type constructor over the type used to
represent the primop arguments; the BOL uses this type constructor applied to thevar type. To ease
the addition of new primitive operations, we generate the definition of theprimop datatype and
the various modules that directly work on it (e.g., constant folding, effect analysis, code generation,
etc.) from a specification file. The primitive operations can be grouped into the following classes:

Boolean operationsThe boolean type serves as the result of conditionals and as the argument of
conditionals. There is one operation — logical negation.

Integer operations There are two fixed-precision integer types in BOL: 32-bit and 64-bit. Each
of these types has a complete set of arithmetic and comparison operations; the former are
prefixed by “I32 ,” while the latter are prefixed by “I64 .” In addition, there are unsigned
comparisons on 32-bit integers (prefixed by “U32”).

11

Floating-point operations There are three floating-point types: IEEE 32-bit single-precision num-
bers, IEEE 64-bit double-precision numbers, and IEEE extended-double-precision numbers.
The size of the latter type depends on the target architecture; it is 80-bits on the Intel IA32
(a.k.a. x86) and 64-bits on the PowerPC. Each of these types has a complete set of arithmetic
and comparison operations that follow the IEEE semantics. In addition, there are two multiply
accumulate instructions that can produce non-IEEE results.

String operations BOL provides operations for comparison of string data values. Since these val-
ues do not have length information (see Section 3), they take a first argument which is a limit
on the number of characters to compare.

Pointer testing operations The translation of higher-level datatypes (e.g., lists) uses the distinction
between pointers and small integers (integers in the range[0, 216− 1]) to distinguish between
different constructors. In this case, we call the pointer aboxedvalue and the small integer a
unboxedvalue. BOL provides operations to test for boxed and unboxed values.

Address arithmetic BOL has a full complement of address arithmetic operations. These are used
to support data-level interoperability with foreign code and data structures.

Conversion operations BOL has conversion operators between the various numeric types. In ad-
dition, it has operations to cast between integer and floating-point representations (e.g., to
allow one to examine the bits of a floating-point number directly.

Synchronization operations BOL includes low-level synchronization operations to support spin
locks and the like.

The following is a list of the BOL primitive operations with their types and a short description
of each operator:

BNot : Bool -> Bool
Boolean negation.

I32Neg : Int -> Int
32-bit 2’s complement negation.

I32Add : (Int, Int) -> Int
32-bit 2’s complement addition.

I32Sub : (Int, Int) -> Int
32-bit 2’s complement subtraction.

I32Mul : (Int, Int) -> Int
32-bit 2’s complement multiplication.

I32Div : (Int, Int) -> Int
32-bit 2’s complement division.

I32Mod : (Int, Int) -> Int
32-bit 2’s complement remainder.

12

I32Not : Int -> Int
32-bit 1’s complement negation.

I32And : (Int, Int) -> Int
32-bit logical and.

I32Or : (Int, Int) -> Int
32-bit logical or.

I32XOr : (Int, Int) -> Int
32-bit logical xor.

I32LSh : (Int, Int) -> Int
32-bit left-shift.

I32RShA : (Int, Int) -> Int
32-bit arithmetic right-shift

I32RShL : (Int, Int) -> Int
32-bit logical right-shift.

I32Lt : (Int, Int) -> Bool
32-bit 2’s complement less-than comparison.

I32Lte : (Int, Int) -> Bool
32-bit 2’s complement less-than or equal comparison.

I32Gt : (Int, Int) -> Bool
32-bit 2’s complement greater comparison.

I32Gte : (Int, Int) -> Bool
32-bit 2’s complement greater-than or equal comparison.

I64Eq : (Int, Int) -> Bool
64-bit equal test.

I64NEq : (Int, Int) -> Bool
64-bit not-equal test.

U32Lt : (Int, Int) -> Bool
32-bit unsigned less-than comparison.

U32Lte : (Int, Int) -> Bool
32-bit unsigned less-than or equal comparison.

U32Gt : (Int, Int) -> Bool
32-bit unsigned greater comparison.

U32Gte : (Int, Int) -> Bool
32-bit unsigned greater-than or equal comparison.

I64Neg : Int -> Int
64-bit 2’s complement negation.

I64Add : (Int, Int) -> Int
64-bit 2’s complement addition.

I64Sub : (Int, Int) -> Int
64-bit 2’s complement subtraction.

I64Mul : (Int, Int) -> Int
64-bit 2’s complement multiplication.

I64Div : (Int, Int) -> Int

13

64-bit 2’s complement division.
I64Mod : (Int, Int) -> Int

64-bit 2’s complement remainder.
I64Not : Int -> Int

64-bit 1’s complement negation.
I64And : (Int, Int) -> Int

64-bit logical and.
I64Or : (Int, Int) -> Int

64-bit logical or.
I64XOr : (Int, Int) -> Int

64-bit logical xor.
I64LSh : (Int, Int) -> Int

64-bit left-shift.
I64RShA : (Int, Int) -> Int

64-bit arithmetic right-shift
I64RShL : (Int, Int) -> Int

64-bit logical right-shift.
I64Lt : (Int, Int) -> Bool

64-bit 2’s complement less-than comparison.
I64Lte : (Int, Int) -> Bool

64-bit 2’s complement less-than or equal comparison.
I64Gt : (Int, Int) -> Bool

64-bit 2’s complement greater comparison.
I64Gte : (Int, Int) -> Bool

64-bit 2’s complement greater-than or equal comparison.
I64Eq : (Int, Int) -> Bool

64-bit equal test.
I64NEq : (Int, Int) -> Bool

64-bit not-equal test.

F32Neg : Float -> Float
32-bit IEEE floating-point negation

F32Add : (Float, Float) -> Float
32-bit IEEE floating-point addition

F32Sub : (Float, Float) -> Float
32-bit IEEE floating-point subtraction

F32Mul : (Float, Float) -> Float
32-bit IEEE floating-point multiplication

F32Div : (Float, Float) -> Float
32-bit IEEE floating-point division

F32Rem : (Float, Float) -> Float
32-bit IEEE floating-point remainder

F32MAdd : (Float, Float, Float) -> Float
32-bit floating-point multiply/add

F32MSub : (Float, Float, Float) -> Float

14

32-bit floating-point multiply/subtract
F32Abs : Float -> Float

32-bit IEEE floating-point absolute value
F32CopySign : (Float, Float) -> Float

32-bit IEEE floating-point copy-sign
F32Sqrt : Float -> Float

32-bit IEEE floating-point square root
F32Pow : (Float, Float) -> Float

F32Lt : (Float, Float) -> Bool
32-bit IEEE floating-point less-than comparison.

F32Lte : (Float, Float) -> Bool
32-bit IEEE floating-point less-than or equal comparison.

F32Gt : (Float, Float) -> Bool
32-bit IEEE floating-point greater-than comparison.

F32Gte : (Float, Float) -> Bool
32-bit IEEE floating-point greater-than or equal comparison.

F32Eq : (Float, Float) -> Bool
32-bit IEEE floating-point inequality test.

F32NEq : (Float, Float) -> Bool
32-bit IEEE floating-point equality test.

F32LtGt : (Float, Float) -> Bool

F32ULt : (Float, Float) -> Bool

F32ULte : (Float, Float) -> Bool

F32UGt : (Float, Float) -> Bool

F32UGte : (Float, Float) -> Bool

F32Ordered : (Float, Float) -> Bool
32-bit IEEE floating-point ordered test.

F32Unordered : (Float, Float) -> Bool
32-bit IEEE floating-point unordered test.

F32Finite : Float -> Bool
test for 32-bit IEEE finite number

F32Infinite : Float -> Bool
test for 32-bit IEEE infinite number

F64Neg : Double -> Double
64-bit IEEE floating-point negation

F64Add : (Double, Double) -> Double
64-bit IEEE floating-point addition

F64Sub : (Double, Double) -> Double

15

64-bit IEEE floating-point subtraction
F64Mul : (Double, Double) -> Double

64-bit IEEE floating-point multiplication
F64Div : (Double, Double) -> Double

64-bit IEEE floating-point division
F64Rem : (Double, Double) -> Double

64-bit IEEE floating-point remainder
F64MAdd : (Double, Double, Double) -> Double

64-bit floating-point multiply/add
F64MSub : (Double, Double, Double) -> Double

64-bit floating-point multiply/subtract
F64Abs : Double -> Double

64-bit IEEE floating-point absolute value
F64CopySign : (Double, Double) -> Double

64-bit IEEE floating-point copy-sign
F64Sqrt : Double -> Double

64-bit IEEE floating-point square root
F64Pow : (Double, Double) -> Double

F64Lt : (Double, Double) -> Bool
64-bit IEEE floating-point less-than comparison.

F64Lte : (Double, Double) -> Bool
64-bit IEEE floating-point less-than or equal comparison.

F64Gt : (Double, Double) -> Bool
64-bit IEEE floating-point greater-than comparison.

F64Gte : (Double, Double) -> Bool
64-bit IEEE floating-point greater-than or equal comparison.

F64Eq : (Double, Double) -> Bool
64-bit IEEE floating-point inequality test.

F64NEq : (Double, Double) -> Bool
64-bit IEEE floating-point equality test.

F64LtGt : (Double, Double) -> Bool

F64ULt : (Double, Double) -> Bool

F64ULte : (Double, Double) -> Bool

F64UGt : (Double, Double) -> Bool

F64UGte : (Double, Double) -> Bool

F64Ordered : (Double, Double) -> Bool
64-bit IEEE floating-point ordered test.

F64Unordered : (Double, Double) -> Bool
64-bit IEEE floating-point unordered test.

16

F64Finite : Double -> Bool
test for 64-bit IEEE finite number

F64Infinite : Double -> Bool
test for 64-bit IEEE infinite number

FXNeg : Extended -> Extended

FXAdd : (Extended, Extended) -> Extended

FXSub : (Extended, Extended) -> Extended

FXMul : (Extended, Extended) -> Extended

FXDiv : (Extended, Extended) -> Extended

FXRem : (Extended, Extended) -> Extended

FXMAdd : (Extended, Extended, Extended) -> Extended

FXMSub : (Extended, Extended, Extended) -> Extended

FXAbs : Extended -> Extended

FXCopySign : (Extended, Extended) -> Extended

FXSqrt : Extended -> Extended

FXPow : (Extended, Extended) -> Extended

FXLt : (Extended, Extended) -> Bool

FXLte : (Extended, Extended) -> Bool

FXGt : (Extended, Extended) -> Bool

FXGte : (Extended, Extended) -> Bool

FXEq : (Extended, Extended) -> Bool

FXNEq : (Extended, Extended) -> Bool

FXLtGt : (Extended, Extended) -> Bool

FXULt : (Extended, Extended) -> Bool

17

FXULte : (Extended, Extended) -> Bool

FXUGt : (Extended, Extended) -> Bool

FXUGte : (Extended, Extended) -> Bool

FXOrdered : (Extended, Extended) -> Bool

FXUnordered : (Extended, Extended) -> Bool

FXFinite : Extended -> Bool

FXInfinite : Extended -> Bool

StrEq : (Int, String, String) -> Bool
test two strings for equality

StrNEq : (Int, String, String) -> Bool
test two strings for inequality

StrCmp : (Int, String, String) -> Int
compare two strings for order

Boxed : Any -> Bool
test for boxed values

Unboxed : Any -> Bool
test for unboxed values

AdrEq : (Addr, Addr) -> Bool
test addresses for equality

AdrNEq : (Addr, Addr) -> Bool
test addresses for inequality

AdrAdd : (Addr, Int) -> Addr
add an integer to an address

AdrSub : (Addr, Int) -> Addr
subtract an integer from an address

AdrAdd4 : (Addr, Int) -> Addr
add a scaled (by 4) integer to an address

AdrSub4 : (Addr, Int) -> Addr
subtract a scaled (by 4) integer from an address

AdrAdd8 : (Addr, Int) -> Addr
add a scaled (by 8) integer to an address

AdrSub8 : (Addr, Int) -> Addr
subtract a scaled (by 8) integer from an address

AdrLoadI8 : Addr -> Int
load a sign-extended 8-bit integer from memory

18

AdrStoreI8 : (Addr, Int) -> ()
store an 8-bit integer

AdrLoadI16 : Addr -> Int
load a sign-extended 16-bit integer from memory

AdrStoreI16 : (Addr, Int) -> ()
store a 16-bit integer

AdrLoadI32 : Addr -> Int
load a 32-bit integer from memory

AdrStoreI32 : (Addr, Int) -> ()
store a 32-bit integer

AdrLoadI64 : Addr -> Long
load a 64-bit integer from memory

AdrStoreI64 : (Addr, Long) -> ()
store a 64-bit integer

AdrLoadF32 : Addr -> Float
load a 32-bit floating-point number from memory

AdrStoreF32 : (Addr, Float) -> ()
store a 32-bit floating-point number

AdrLoadF64 : Addr -> Double
load a 64-bit floating-point number from memory

AdrStoreF64 : (Addr, Double) -> ()
store a 64-bit floating-point number

AdrLoadFX : Addr -> Extended
load an extended-precision floating-point number from memory

AdrStoreFX : (Addr, Extended) -> ()
store a extended-precision floating-point number

AdrLoadP : Addr -> Addr
load an address from memory

AdrStoreP : (Addr, Ptr) -> ()
store an address

AdrLoadU8 : Addr -> Int
load an unsigned 8-bit integer from memory

AdrLoadU16 : Addr -> Int
load an unsigned 16-bit integer from memory

AdrLoad : Addr -> Any
load a word from memory

AdrStore : (Addr, Any) -> ()
store a word

CvtI32ToI64 : Int -> Long
zero-extend a 32-bit integer to a 64-bit integer.

CvtxI32ToI64 : Int -> Long
sign-extend a 32-bit integer to a 64-bit integer.

CvtI32ToF32 : Int -> Float
convert a 32-bit integer to a 32-bit floating-point number.

19

CvtI32ToF64 : Int -> Double
convert a 32-bit integer to a 64-bit floating-point number.

CvtI32ToFX : Int -> Extended
convert a 32-bit integer to an extended-precision floating-point number.

CastF32ToI32 : Int -> Float
cast a 32-bit floating-point number to a 32-bit integer.

CastI32ToF32 : Int -> Float
cast a 32-bit integer to a 32-bit floating-point number.

CastF64ToI64 : Double -> Long
cast a 64-bit floating-point number to a 64-bit integer.

CastI64ToF64 : Double -> Long
cast a 64-bit integer to a 64-bit floating-point number.

CvtF32ToF64 : Float -> Double
convert a 32-bit floating-point number to a 64-bit floating-point number.

CvtF32ToFX : Float -> Extended
convert a 32-bit floating-point number to an extended-precision floating-point number.

CvtF64ToFX : Double -> Extended
convert a 64-bit floating-point number to an extended-precision floating-point number.

I32CmpAndSwap : (Addr, Int, Int) -> Bool, Int

I64CmpAndSwap : (Addr, Long, Long) -> Bool, Long

20

