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Abstract. We present a new technique for optimizing programs, based
on data-flow analysis. The initial goal was to provide a simple way to
improve on Leroy and Peyton-Jones’ techniques for optimizing boxings
(allocations) and unboxings (field selection) away in strongly-typed func-
tional programs. Our techniques achieve this goal, while not needing
types any more (so it applies to Lisp as well as to ML), and providing a
finer analysis; moreover, our techniques also improve on classical common
subexpression elimination. The methods are twofold: intraprocedurally,
we use a data-flow analysis technique that propagates congruences on
program variables and terms built on these variables; interprocedurally,
we help the intraprocedural analysis by inlining, at least partially, all
functions whose definitions are known at call sites.

1 Introduction

One of the source of inefficiencies of compiled functional language implementa-
tions is the great number of boxings (allocating tuples on the heap) and unboxings
(reading off components of tuples) that are to be done at run-time by the com-
piled code. Unboxing a value that has just been boxed is costly because it may
force a useless read to get data that was already in a register. Boxing a value is
costly in allocation time, but also in garbage collection time: the more data are
boxed, the more time the garbage collector spends to detect and free dead data.
Interesting cases to detect at compile-time are when boxings are redundant (the
same tuple is allocated twice), or useless (a tuple that is never used is allocated),
or annihilated by a subsequent unboxing operation (a tuple is allocated, only to
be unboxed).

In general, boxings and unboxings are not limited to tuples. Floating-
point values are usually boxed in functional language implementations, thereby
strongly penalizing all numerical computations: on modern architectures,
floating-point operations take just a few cycles and run in parallel with integer
and addressing instructions; boxing then incurs a loss of parallelism and a high
overhead. In dynamically-typed languages like Lisp, we might also want to box
machine integers to make tag tests faster on a system-wide basis (this is unneces-
sary in languages like ML). Moreover, allocating strings on the heap, allocating
closures and run-time environments, allocating references (in ML) are also spe-
cial cases of boxings. We can generalize the notion, and consider, for example,



that integer addition is a boxing operation, and subtraction is an unboxing; or in
a set language, that building a set is a boxing operation, and that testing for set
membership is an unboxing.

We propose a static analysis framework for detecting redundant boxings, use-
less boxings, and annihilating boxing/unboxing pairs simultaneously. It propag-
ates finite sets of equalities between program variables and expressions, in a way
reminiscent of congruence closure. This analysis decorates the control-flow graph
for the program, and this decoration is in turn used for simplifying the program.

To achieve gains across procedure calls, we introduce the notion of partial
tnlining. Whereas inlining transforms interprocedural analyses into intraproced-
ural ones, it is not always wise or possible to inline systematically all procedures.
For our purposes, it will be enough to inline only parts of functions that unbox
input arguments and box the results to achieve significant improvements.

The plan of the paper is as follows. In Section 2 we present related work in the
field of optimizations related to boxing and unboxing, and in data-flow analysis.
As this is a compilation problem, we present in Section 3 a suitable abstract
syntax on which to apply our optimizations. We explain the intraprocedural
techniques in Section 4, and deal with higher-order functions in Section 5. We
conclude in Section 6.

2 Related Work

In the framework of functional programming languages, a simple and elegant
system for converting a ML program with uniform representation (all values
boxed) to mixed representation (some values are unboxed) was proposed in 1992
by Leroy [17]. The technique consists in translating source ML code to a target
language with explicit boxing and unboxing operations. The translation is guided
by the structure of type derivations. The target language is essentially ML again,
except that types are enriched by types of the form [r] (the type of all boxed
data of type 7; 7 itself represents the type of all unboxed data of type ), and
there are two new coercion operations, wrap(r) to box values of type 7, and
unwrap(7) to unbox values of type [r]. This language can then be optimized, using
for instance techniques by Peyton-Jones [20], which are expressed as source-to-
source transformations on the target language.

This system is simple, elegant, and deals naturally with higher-order func-
tions; however, as Leroy notices, it has a few drawbacks, and notably that all
coercions are strict (not lazy), so that this may introduce spurious annihilat-
ing boxing and unboxing operations. Peyton-Jones’ techniques may be used to
eliminate the latter, but any naive implementation of these would require many
passes over the whole code, and it is not clear how we could implement these
in a clever way. Moreover, special care should be taken to extend the system to
call-by-value and to include side-effects on mutable data, as Peyton-Jones heavily
relies on the validity of f-reduction to prove his transformations correct.

Henglein and Jgrgensen [13] present a complicated calculus to optimize an-
nihilating boxing/unboxing pairs, again in a typed and side-effect free setting.



Redundant and useless boxings are not dealt with. Moreover, some doubts have
recently been expressed as to the validity of their results.

Instead of producing lazy coercions directly, our idea is to produce strict
coercions again, and to eliminate them by data-flow analysis techniques. This 1s
already needed in Leroy’s system, which produces annihilating boxing/unboxing
pairs. By using a different abstract syntax (presented in Section 3), we shall
actually dispense with coercions at all, and get a system that does not depend
on typing to work. So our system will be applicable even to languages that are
untyped, impure (with side-effects) and with any kind of semantics for calls (by
value, by need, by name, for example). In these respects, we shall subsume both
Leroy’s and Peyton-Jones’ techniques.

Data-flow analysis techniques have been thoroughly developed for imperative-
style programming languages [1], and already solve some of our problems: re-
dundant (generalized) boxings are also called common subezpressions [4, 9], and
can be detected by congruence closure [9, 18, 10] and then eliminated. The first
algorithms to do this were limited to basic blocks, but they can be extended to
full procedures [21] by using static single assignment form (SSA) for programs
[6] (see Section 3).

If all we want is to detect redundant boxings, then very fast techniques are
available [2] which run in time O(E log E), where E' is the number of edges in the
control-flow graph. To detect useless boxings, a dependence flow graph (DFQG)
[14] can be built that links definitions to uses (this is the converse of a use-def
chains graph [15]); as only possibly useful definitions are needed for building the
DFG@G, useless ones will remain outside the DFG, and needn’t give rise to any
actual code. Apart from Henglein and Jgrgensen, annihilating boxing/unboxing
pairs have been dealt with by Peterson [19]. But his technique is based on the
assumption that data live in exactly one state at any time (boxed or unboxed,
but not both), which can limit the benefits of the claimed optimality of his
optimization algorithm. We consider boxed data as different from their unboxed
counterparts, so that this restriction (which can be partly lifted in Peterson’s
case) has no equivalent in our framework. The only drawback of doing so is
that we may force additional register spills because we now need more registers
to hold more different representations of the same data: our point is that these

spills are usually less costly than the boxings and unboxings we save.

Finally, it is a common assumption that these techniques, which are all in-
traprocedural, generalize to interprocedural analyses through procedure inlining.
But, even though full inlining is possible by translating procedure calls to gotos
and managing a call stack by hand, this might lead to impractical analyses for
large programs. Moreover, the assumption that we can always inline breaks when
separate compilation is needed, unless we leave the job of optimizing programs
to the linker. We solve the problem by inlining functions partially, as we show in
Section 5. This can be seen as an efficient way of doing deforestation [26]. This
will, by the way, enable us to correct a defect in Leroy’s treatment of higher-order
functions. Our technique is quite close to call forwarding [7]. We use a simpler
scheme in that instructions are not reordered: we feel this should be enough for



ML-like languages, although for dynamically-typed languages, we agree with the
authors that reordering is certainly needed. In contrast, whereas call forwarding
moves actions done on entry to procedures to their call sites, we also move exit
actions from exits of procedures to just after their call sites (by analogy, we might
call this “return backwarding”).

3 An Abstract Syntax

Leroy presents his technique on a mini-ML-like language, 1.e. a call-by-value A-
calculus with constants and the let construct, where the only data structures
are pairs. To get a more realistic language, we add mutable ML references to be
able to do side-effects, and conditional expressions for convenience.

A good way of compiling any language, including functional ones, is to trans-
late the source language to an intermediate representation, which should reflect
closely enough the operational semantics of the target machine. We use a static
single-assignment form representation [6]. A code fragment for representing a
function is a graph whose nodes are statements. Apart from function headers,
statements are return instructions, tests, joins (merging two control flow paths to-
gether) and assignments. Most assignments will have the form z := f(z1,..., ),
where x, ¢1, ..., &, are variables, and f is a function symbol (we shall say a tag)
representing a basic primitive of the target machine. Moreover, distinct assign-
ments define distinct variables: there is only one site where any variable z can
be defined, hence the name “static single assignment”.

Figure 1 describes such a minimal language. We have not explicitly included
booleans or integers, as they are unboxed anyway in most implementations. State-
ments can be: conditionals if(z, s, s’) (test @, and continue execution at statement
s if true, at s’ if false); return statements return(z) (returning the value of z);
or assignments z := e; s which evaluate the expression e, define z as being the
value, and resume execution at statement s. Each statement has zero, one or more
continuations, which are pointers to statements, and which we have denoted by
objects of type fstmt: this can be seen as describing a control flow graph. It is
not quite in continuation-passing style [22, 3], as continuations are constant and
cannot be passed to functions. Moreover, should we want to eliminate control
artifacts that both control-flow graphs and continuation-passing style programs
introduce, better but more complicated representations should be used [27]. We
stick to our minimal language for simplicity.

Join nodes are assignments of the form x :=join(z1,...,2,). They have ex-
actly n predecessors, and have the effect of assigning x to x; on arrival from the
ith predecessor: they are the same as the ¢ function of [2]. They also allow us
to group all return statements into one join node followed by a unique return
statement: we shall therefore assume that the return statement is unique.

Function headers are lists of variables, decorated with storage information,
either boxed (any boxed value), or unboxed types (floating-point values, code
addresses; we could also have added integers, booleans, etc.) Notice that the
storage class of the return value of functions (or void if nothing is returned) can



code ::= header fstmt header ::= decl*

decl = var : storage storage ::= boxed | unboxed-float | unboxed-code
stmt = if(var,Tstmt, tstmt)

|  return(var)

|  var := expr; fstmt
expr ::= const | var

|  box-float(var) | unbox-float(var)

|  box-pair(var,var) | fst(var) | snd(var)

|  box-ref(var,var) | unbox-ref(var)

|  box-clos(var,var) | unbox-fn(var) | unbox-env(var)
|  apply(var,var*)

|  set-ref(var,var)

| join(var*)

|

const m=nil | 0.0] 1.0 | -1.0 | 0.5 | -2.0 | ...| code(code)

Fig.1. A minimal static single-assignment language

be statically determined by looking at the last tag of an expression building a
return value. When translating from Lisp or ML, these storage classes will all be
boxed initially. The transformations we shall present in Section 5 will preserve
the fact that the storage class is unique and does not depend on the particular
chosen execution path through the code.

Expressions may be variables, constants, or simple instructions, identified by
tags (box-float, etc.) Constants are all assumed to denote unboxed values, so
there are instructions to box and unbox each type of values, as in [13]: reals
(2nd row of the expr definition), couples or pairs (3rd row; fst selects the first
component, snd the second component, as in Lisp), references (4th row), closures
(5th row; they are pairs of a code address, i.e. a constant built with code, and
an environment, that we take as a list of variable/value pairs, built with nil and
box-cons to make the exposition simpler). Functions (or rather, code addresses)
can be called on a list of arguments, so that apply(f, z1,...,#y) calls the code
at address f with arguments x1, ..., z, (of which one in general is a closure
environment). References can be modified by using set-ref (7th row), and join
encode ¢ functions. Finally, the ellipsis (...) in the definition of expressions
stands for any extra primitive instructions.

We chose these primitives because we wanted to clearly distinguish boxed
and unboxed objects. The difference with Leroy’s or Peterson’s representation is
small, technically: whereas they consider objects z in either boxed or unboxed
states, we consider these states as different objects, with a boxing operation to
build the boxed one from the unboxed one, and an unboxing operation to build



the unboxed one from the boxed one. This is why we don’t need unboxed pairs,
notably: here, an unboxed pair (, y) just consists in « and y separately.

This representation transparently encodes use-def chains [15], which are of
great help in data-flow analysis. Indeed, variables x are either parameters (put
in the header of the current code) or defined in exactly one assignment z := e, so
we can identify variables with assignments and parameters, i.e. definition sites.
So, in an expression ¢, the set of variables appearing in ¢’ is precisely the set of
definition sites corresponding to the use €’. In the implementation, we code an
assignment z := e as a mere new reference to e, which we see ambiguously as
both the assignment statement and the variable z. Hence the value graph of [2]
is already a subgraph of our control-flow graph.

We don’t give the semantics of operators, as they should be clear from their
informal description. In fact, since we rely on data-flow analysis, we only need
to know what equations are generated and which equations are killed at each
statement. Let us just say for the sake of illustration that box-ref is generative,
and creates a new reference each time it is called (by allocating a new reference
cell from the store, say), that unbox-ref gets back the current contents of this
reference; and that, as in Standard ML, references are the only mutable data. In
particular, pairs are not mutable. Finally, code is not generative: it returns the
address of the compiled code for the function in argument.

Translating a piece of Lisp or ML code to this abstract syntax is straight-
forward: it basically consists in simulating the evaluation of this code by an
interpreter on an SECD machine [16]. Care should however be taken in the way
we translate constants. Because our language has fine-grain boxing operations,
translating the evaluation of a constant like 1 means producing the sequence of
assignments z; := 1; 23 :=box-float(z;). Likewise, assuming for instance that we
have an additional tag add for adding two floating-point values, adding two boxed
reals stored in z and y respectively should give rise to the sequence z; :=unbox-
float(z); 22 :=unbox-float(y); 3 :=add(z1, z2); 24 :=box-float(z3);. To sum up,
all boxing and unboxing operations are made explicit.

We do not need types to produce such a translation, so that we are not tied
to ML, and can do this on Lisp for instance. However, this introduces many
spurious boxing/unboxing pairs: this is why we shall be even more interested in
optimizing them away. We describe our technique in Section 4. Moreover, when
translating function calls, we assume that all functions take boxed values and
return boxed values. So, this translation does not (yet) deal with the higher-
order part of Leroy’s method. But the partial inlining technique (described in
Section 5), a modified kind of call forwarding, does precisely that.

4 Intraprocedural Analysis with Congruences

One of the primary goals we want to achieve is to eliminate redundant box-
ing/unboxing pairs. For example, assume we have the following piece of code:
s; #1 :=box-float(zo); ... ; #n :=unbox-float(z1); s’



We would like to replace the unbox-float instruction by the faster z, := xq,
and also to replace all subsequent uses of z, by uses of xg. Then, as z, is not
used any more, we might as well not produce any code for the useless definition
z, = xg when translating this to, say, assembler.

Detecting useless statements is easy: the only really needed statements are
headers, return statements, statements with side-effects (just set-ref assignments
in our language), and definitions of values used by needed statements. Detecting
needed statements is then done by marking statements, following use-def chains.
All other statements are useless, and no code needs to be generated for them.
Note that we don’t need to eliminate useless statements from the control-flow
graph, except to speed up the analysis.

It remains to detect the semantical property that allows us to replace
z, :=unbox-float(z,) by #, := zg. This is: unbox-float(box-float(z)) = z for all
z, instantiated to the case where z 1s z(. Logically speaking, the program vari-
able z 1s a fixed object, that is, an uninterpreted constant, so this is a ground
equation. In usual common subexpression elimination, these ground equations
are further restricted to be equations between variables of the program (or, lo-
gically speaking, equations between constants only). Here we need more general
equations like unbox-float(box-float(zg)) = x¢ at the definition site for 21, where
no variable has yet been encountered that could describe the left-hand side.

4.1 Data-flow Analysis of Congruences

The general theoretical framework is the usual data-flow analysis one [1]. We need
aset V of values to be propagated, a way of computing, for each statement s, a set
gen(s) of values generated by s, and a set kill(s) of values killed by s; and a binary
meet (A) operation on values to be applied at join nodes. (V, A) should then be a
lower semi-lattice, and the analysis computes a greatest fixed point of equations
out(s) = (in(s) \ kill(s)) U gen(s) (for non-join nodes), out(z) = (/, out(z;)
at join nodes z :=join(z1,...,2,) (remember we identify variables with their
defining statements), and in(s') = out(s) if s’ is a continuation of s. The set
out(s) is then a set of valid values after statement s, and is computed from
the set in(s) of valid values before s. The analysis terminates if the semi-lattice
is well-founded; otherwise, we need narrowing operators (see [5], where data-
flow analysis is shown to be a special case of the general abstract interpretation
technique).

In our case, V should be the set of all finitely-generated congruences between
ground terms built on program variables (playing the role of logical constants)
with pure — side-effect free — instruction tags (playing the role of logical func-
tion symbols). These terms enjoy all the properties of classical ground terms
in first-order logic [10]. A congruence is a binary relation = that is reflex-
ive, symmetric, transitive and hereditary: if ¢ = ¢, ..., t,, = t,,, then
Ft, .. tm) = f(t),...,t,). Such a congruence is finitely generated if it is
exactly the set of equational consequences of a finite set of equations 1 = ¢},
1 < i < n, ie, the set of equations deductible from these and the rules for
congruences.



Whether a given equation is an equational consequence of a finite set of ground
equations is decidable in almost linear time [18, 9]. However, the natural order
on Vis (&) < (¥3), defined as Vi, ¢’ -t = ¢/ = t =5 /| i.e. as a set inclusion
ordering, {(¢,t') |t =1 ¢} C {(t,t') | t =5 t'}. This indeed yields a lower semi-
lattice, but 1t is not well-founded, as for instance the sequence of congruences
generated by the single equation 2o = f™'(2¢), for 0 < n < 400, is infinite and
strictly decreasing.

Restricting equations, rather severely, to act on program variables alleviates
the problem, and yields the usual common subexpression problem semi-lattice.
Note that the Union-Find structure used by the congruence closure algorithm is
encoded inside the value graph itself (which is part of the control-flow graph in
our representation). Equations x = y, once oriented as & — y with the definition
of y dominating z, build a Union-Find tree, i.e. a tree where all edges are oriented
links that point towards the roots (there are no cycles, as they could only be
generated by join nodes, but join tags hide the uses of variables there).

4.2 Extending the Common Subexpression Framework

To get a decidable procedure, the limitation of only using equations between
program variables is not necessary, and it is enough to limit the height of terms
to some finite constant: the set of allowed terms is then finite, hence the set of
congruences on them, too. Although speaking of program variables only is not
enough for us, dealing with equations of the form ¢ = z, where z is a program
variable and ¢ is either a variable or a term f(z1,...,2,), where the 2;’s are
variables, will suffice.

This could be achieved by adding assignments of all possible such terms to
new, unused variables, and then applying standard algorithms as in [21]. Intuit-
ively, we could cache the unboxed values in unboxed temporaries. But we should
then also cache boxed values: on defining z, we should forecast that we might
use any couple (z,y) or (y, ) in the future, with y any arbitrary other variable.
This is clearly impractical.

Among the useful equations in our language, we find the following (by con-
vention, we write finite sets of equations instead of the corresponding finitely-
generated congruences). On encountering « :=box-float(y), define gen(z) = {box-
float(y) = z,unbox-float(z) = y}, kill(z) = 0 (recall that assignments are identi-
fied with variables); symmetrically, for # :=unbox-float(y), gen(z) = {unbox-
float(y) = z,box-float(z) = y}, kill(x) = 0. For z :=cons(y,z), gen(z) =
{cons(y, z) = z,fst(z) = y,snd(z) = z}, kill(z) = @ (our cons-cells are immut-
able); and for z :=fst(y), gen(z) = {fst(y) = z}, kill(z) = @ (and similarly with
snd). For 2z :=box-ref(y), gen(z) = {unbox-ref(z) = y} (no equation on box-ref,
as it has a side-effect: it must produce a new reference cell), kill(z) = §). For
x :=set-ref(y, z), gen(x) = {unbox-ref(y) = z}, and kill(x) is the set of all equa-
tions unbox-ref(y’) = 2z’ in in(x) such that ¥ may be aliased to y (to make things
simple, we can take all equations of this form; more sophisticated alias analyses
may be used [8, 23]). For z :=apply(z1,...,2m), gen(z) = 0, kill(z) is the set
of all equations of the form unbox-ref(y’) = 2’ in in(x) (again, this is an alias



problem; for a simple implementation, recognizing that 1 is a function without
side-effects is enough to produce gen(z) = {apply(z1,...,zm) = z}, kill(z) = 0).
The equations for the remaining tags follow the same principles.

In the fst and snd cases, we don’t generate any equations of the form
cons(z, z) = y where we know that z =snd(y), for example. This would not only
be complex, but useless as well: either y was built by cons, and we already had all
needed equations, or y was an input parameter to the current code. In the latter
case, we can recover the needed equations by inserting just after the header the
sequence 1 :=fst(y); x2 :=snd(y); xs :=cons(x1,x2); x4 :=assert(y, x3), where
assert is a tag having no run-time effect, but asserting that its two arguments are
equal (its second argument should never be marked as needed, since we don’t
want to output any code for the corresponding sequence of statements; this also
forces us not to eliminate useless code at analysis time). Such an assertion can
be deduced from the most general type of the input parameter y in ML. In other
languages, like Lisp, such an equation cannot be inferred, but it would not hold
anyway, as two calls to cons are then required to produce two different cells, even
if they have the same contents (in contrast with Standard ML, where equality is
determined by contents).

4.3 Implementation

We represent these restricted congruences as finite sets of oriented equations,
represented as the disjoint union of a set of rewrite rules 2 — y between program
variables, and a set of rewrite rules f(z1,...,2,,) — y rewriting expressions to
variables. This does not yield a canonical representation for congruences, but
it would probably too costly to maintain one in general by systematically cross-
rewriting each rule by all the other rules. An exception is when the control-flow
graph is reducible; then, if we traverse the control-flow graph in topological order,
we need only rewrite the generated equations and the killed equations, never the
equations in in(s). But other optimizations might destroy the reducibility of the
control-flow graph: in ML, for example, replacing raise expressions inside the
scope of exception handlers by gotos in general produces irreducible graphs.
Replacing the semi-lattice of congruences by the semi-lattice of such restric-
ted finite sets of equations, ordered by set inclusion, provides a lower, hence
safe, approximation. Indeed, if £ and E’ are two finite sets of equations, the
congruence generated by E N E’ is lower than or equal to the meet of the con-
gruences generated by F and E’ respectively. We therefore need only be able
to compute set intersections, unions and differences quickly. Bit-vectors cannot
be used easily here, and hash-tables are hardly usable for these operations. But
binary hash-tries [24], as used in the HimML system [11, 12], provide a nice
representation: hash-cons all terms (i.e, share all equal terms by using a global
hash-table), so that terms have a unique address; a hash-trie is then an acyclic
minimal deterministic finite automaton that recognizes a finite set of addresses,
seen as binary numbers, or as sequences of bits. If n and n’ are the cardinal of
the two input sets,with n < n’, all these set operations take average time O(1) if
n = 0, or otherwise O(n+log(n'/n)) (in practice, this means it takes time almost



linear in the smallest of the two cardinals). Moreover, the standard deviation is
negligible [25], and these times do not depend on the size of the elements. Finally,
these operations are non-destructive: their arguments are not modified during the
computation.

Assume that, at each statement s, kill(s) and gen(s) contain at most k equa-
tions, there are n nodes in the graph, and & < n. Then in(s) and out(s) will
contain at most kn equations, and the average time for computing out(s) as a
function of in(s) at a non-join node is O(k + logn), and O(nkp) at p-ary join
nodes: with the right data structures, analyzing a node in this approach can be
done quite efficiently. To analyze a whole code fragment, we propagate systems
of equations forward, decorating nodes with the resulting out(s) systems of equa-
tions, until a fixed-point is reached, i.e. until all decorations are stationary. All
standard techniques for speeding-up data-flow analyses are usable, notably the
use of expression ranks as in [21].

Once the control-flow graph has been decorated with such systems of equa-
tions, it only remains to simplify all expressions in the program by following the
arrows in the computed rewrite rules. Then, mark all needed expressions, and
produce assembler code only for needed expressions.

4.4 Discussion

This optimization technique uses much more space than that of [2] (roughly
quadratic space in n instead of linear). The reason is not our using a more
expressive language of equations, but the fact that we have side-effects on general
pointers, as simulated by operations on references. In [2], there are no pointers
that called procedures might tread on. So all kill sets are indeed empty, giving
rise to the simplification that only the set of equations at the return node is
needed (in SSA form) to simplify the whole current code.

To see what is achieved by our technique, consider the arithmetic expression
a + b x b, working on floating-point values computed by expressions a and b.
Assuming we have all needed tags with the obvious interpretation, and that b 1s
side-effect free, this would be translated to:

x1 = a; x2 1= b; x3 := b; x4 :=unbox-float(z2); x5 :=unbox-float(z3);

xg :=mult(za4, 5); x7 :=box-float(ze); xs :=unbox-float(z1);

xy :=unbox-float(x7); x10 :=add(zs, g); 11 :=box-float(z10); return z11
which would be optimized to:

ry = a; xy 1= b; 23 := z9; x4 :=unbox-float(zs); 25 := 24

zg :=mult(zy4, 24); 27 :=box-float(zg); zs :=unbox-float(z;);

Ty = zg; T10 :=add(zs, 26); 211 :=box-float(z10); return z1;
where, if we consider only needed statements, is equivalent to:

zy = a; xg 1= b; 24 :=unbox-float(zs); z¢ :=mult(zy4, 24);

xg :=unbox-float(x1); 10 :=add(zs, xg); 211 :=box-float(x1¢); return 11

The computation unboxes the values for a and b, computes the arithmetical
expression entirely in registers (unboxed floats usually lie in floating-point re-
gisters at run-time), and boxes the result. This is important, as unboxing a into
zg can be done on modern architectures in parallel with multiplication, since



integer and floating-point ALUs run in parallel. Finally, notice that the compu-
tation of the common subexpression b has been factorized in z4.

This optimization can also be applied to operations that are not boxings
or unboxings in the strictest sense. The only things we have to produce are new
ground equations in the required format. Therefore, we can express equations like
z+0=0or (z+y)—y = 0, simplifications on high-level data-structures like lists
or even on sets in a set-based language, for instance. We call these generalized
boxings, and although the gains may not be big on arithmetic expressions, on all
other data-structures they usually are; but this would lead us too far astray.

Our optimization is flow-insensitive, but we can make it partially flow-
sensitive by interpreting ifs so that they generate new equations on each of their
two respective branches. However, to get full flow-sensitivity we would have to
change the basic semi-lattice V' rather deeply.

5 Higher-Order Functions and Partial Inlining

Some boxings and unboxings remain in the optimized code of the example of
Section 4.4; we should be able to get rid of them if they are not needed. The only
case where they are needed, in the example, is when a and b come from compon-
ents of data structures, and the result is to be put again in a data structure. As
Leroy notes [17], it is not only hard but undesirable to flatten representations of
data structures by putting unboxed values inside boxed structures; so we shall
consider, as he does, that all boxed structures contain only boxed data.

The only other case where we cannot dispense (yet) with boxings and unbox-
ings are when a and b are input parameters, and when the result is returned by
the current piece of code. Leroy’s technique can be thought of as solving this very
problem. Tt converts all ML functions (originally taking one boxed argument and
returning one boxed result) into unwrapped functions, which take unboxed argu-
ments and return unboxed results. (Unboxed tuples are just a bunch of unboxed
values, so unwrapped functions must return multiple results in general.)

On the other hand, we may use functionals, i.e. functions F' that take functions
f in argument. If F' is polymorphic, then f may have different input/output
specifications, but we should still be able to call F on f. Following Leroy, we
therefore also need stub functions around unwrapped functions f. Stubs have a
uniform interface (take one boxed argument, return one boxed argument); they
first unbox their argument, then call f and box the result, which they return.

Leroy’s scheme has a few defects, however. First, because of ML’s explicit
type annotations (not provided in Leroy’s expository language): fn x => (x,x)
is compiled as is, but annotating x with the specialized type 7 * 7/ would force
Leroy to convert this into a function fn (x1,x2) => ((x1,x2),(x1,x2)), with
a stub around it extracting x1 and x2 from x. Although this may seem a minor de-
fect, this is pathological: type annotations should improve, not degrade the qual-
ity of the code. Another problem stems from the use of definitions by pattern
matching in Standard ML: the function fn (x,[1) => x | (x,[y]l) => x+y,



for example, has type num * num list -> num, so Leroy would con-
vert this to a function taking two arguments x and z, and computing
case z of [1 => x | [yl => x+y. However, if we do not inline the function,
the test of z against [] hides the unboxing of z into y if z # []; these would
be valuable information to increase the accuracy of our data-flow analyses. Our
system is more versatile than Leroy’s in this respect.

Be aware that we do not claim to get optimal solutions in any sense, but reas-
onably efficient compiled code using reasonably efficient compilation algorithms.
Leroy’s solution is optimal for monomorphic programs, we are not. But the gain
seems small, as higher-order functions like map are useful, most of the time, pre-
cisely because they are polymorphic. The only serious flaw of our scheme is that,
contrarily to Leroy, we cannot optimize across modules, as we cannot optim-
ize calls unless we know the code of the called function; Leroy only needs their
specification (their type), and so can do better in this case.

5.1 Partial Inlining

Our technique is similar to call forwarding [7]: copy entry actions in a procedure
f to just before each of its call sites, and modify f so as to skip these actions.
Additionally, we do the converse (“return backwarding”): copy exit actions of f
to just after its call sites, and modify f so as to skip these exit actions.

To gain enough significant information to be re-injected into the intraproced-
ural data-flow optimizer, we define the entry (resp. exit) actions of interest as
all possible unboxing (resp. boxing) operations at entry (resp. exit). After using
call-forwarding and return-backwarding on a function f, we get its unwrapped
representation f. And because f may be passed as an argument to a functional
which may then call it, we leave a stub for f that just calls f after doing the
call-forwarded unboxings, and then does the return-backwarded boxings.

With call forwarding, it is usually necessary to reorder entry (and exit) actions
so that a most favorable sequence can be extracted from the body of f. This is
NP-complete in general because it needs to find an optimal sequence for tests
(if nodes); considering only unboxings and boxings is simpler, as we now show.
Initially, replace the code for f by code that just calls f, where f is a new function
whose body is the former body of f (now, f has only one call site, i.e. the one
in the body of f). Then proceed to call-forward and return-backward: as long as
there is an argument x to f that is only used by unboxing operations (we can
detect this on a DFG [14]) in f, say y :=fst(z) and z :=snd(z), generate the same
unboxings just before the call site of f in f, replace the boxed argument z by
the unboxed ones (here, y and z), both in the header of f and at its call site,
and replace all uses of the unboxed variables in the body of f by references to
the new formals. Symmetrically, as long as the result z of f is created by the
same boxing operation on all paths (we detect this on use-def chains) in f, say
x :=box-ref(y), generate the same boxing just after the call site of f in f, replace
the return(z) instruction at the end of f by an instruction returning all unboxed
components (here, y). Note that in general, we need a n-ary return instruction;
if we compile to C, it is wise to restrict ourselves to unary boxings.



The code for f now serves as a stub for f, and also as a template that we
inline systematically; we don’t inline f, unless it is small enough (in this case,
we are just doing classical inlining). This way, call sites to f become call sites
to f, in the middle of call-forwarded and return-backwarded instructions. The
whole interprocedural optimization then triggers a new intraprocedural pass to
simplify codes containing calls that have just been inlined, and then stops. (We
might also go on seeking for new inlinable functions after this pass, and continue

until no progress can be made, but this is probably not worth it.)

If we had a call to some function f in the original program, what our procedure
does depends on what we know about f. If f is a function whose code is unknown
(an argument of the current function, or a function in another module), then
f will necessarily be the wrapped version, and plays the role of Leroy’s stub
functions. We lose some efficiency w.r.t. Leroy’s approach only when f was a
function in another module. Otherwise, we know the code for f, and either it 1s
small enough for us to inline it, and all annihilating boxing/unboxing pairs that
appear are eliminated by the data-flow technique of Section 4; or it is still too big,
and replacing f by some unboxings, a call to the unwrapped function f, and some
new boxings gives good opportunities for new data-flow optimizations; actually,
as many as in Leroy’s approach, but without needing any type information, so
this approach is equally well-suited to Lisp, for example.

Our approach can be extended to call-forward tests as well (as in the usual call
forwarding mechanism). This involves return-backwarding corresponding join
nodes as well. Even without reordering sequences of if nodes, this might prove
useful for compiling ML patterns (if reordering is necessary, the algorithm of
[7] should be used). A ML function fn paty => expry | ... | pat, => expry
(where expr; is executed if the argument given to the function matches pat; but
none of the pat;’s, 1 < j < i) is translated to code where, in addition to usual
unboxing operations, conditionals are used to decide which pattern is the first
to match. In this case, we also extract the conditionals that select on values of
arguments from f, and put them in f; we then need to split f in several fi’s
corresponding to each of the branches of the conditional; this is straightforward.

For instance, fn (x,[1) => x | (x,[y]l) => x+y would be translated
to a function f taking a couple, decomposed as (x,z), and com-
puting case z of [] => fl(x) | [yl => fg(x,y), with f; =fn x => x,
fg =fn x,y => x+y (where we have not explicitly shown the various numer-
ical boxings and unboxings; also, in such a simple case, fi and f3 should be
inlined since they are so small, but this is only an example). Then, inlining f
at its call sites gives our intraprocedural analysis an opportunity to optimize
boxings and unboxings depending on the branch taken, calling either fl or fg.

Finally, notice that our technique usually optimizes allocation of run-time
environments away in lexically-scoped languages. When no closures are returned,
we only need to build environments when currified functions are used. However,
currified functions like fn x => fn y => x are typically small functions which
return functions (here, fn y => x). The latter are then in turn partially inlined,

eventually producing unwrapped functions that do not need to build or read



values from heap-allocated environments any more.

6 Conclusion

We have shown that a combination of a simple intraprocedural data-flow analysis
technique propagating systems of oriented equations between variables and terms
of height at most 1 over program variables, and of a refinement of inlining that
we call partial inlining, provided a more versatile and more powerful analysis
technique than Leroy and Peyton-Jones’ for detecting and eliminating redundant
boxings, useless computations and annihilating boxing/unboxing pairs, at least
inside a common module. Leroy’s technique is superior when optimizing across
modules, because it uses types, and we don’t. We don’t feel this is a serious
problem in practice; but in ML, types should be used to give this level of code
quality. We leave the problem of integrating this as future research.

Our technique is also beneficial to dynamically-typed languages like Lisp.
And whatever the type discipline of the language it is applied to, it is not lim-
ited to boxings and unboxings, and generalizes the detection and elimination of
redundant computations to that of annihilating computations; the cost does not
appear to be higher than classical data-flow analyses.

This technique is being implemented in the HImMTL compiler [12], a compiler
for a variant of Standard ML with fast sets and maps, for which it is in particular
of paramount importance in simplifying computations on sets (building a set can
be seen as a boxing operation, and testing for set membership as the correspond-
ing unboxing operation). Although we don’t have yet any practical measurements
that would corroborate or invalidate our claims, we feel the techniques we have
presented are promising.
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