
CMSC 22610
Winter 2004

Implementation
of

Computer Languages

Handout 2
January 9, 2004

Project overview

1 Introduction

The project for this course is the implementation of an interpreter forMini-Lua, which is a subset of
the scripting language Lua.1 The project will be broken into four pieces (or milestones). Roughly
half of the project grade will depend on the milestones and half on the completed project. This
document gives an overview of the project; separate handouts will describe the individual pieces of
the project.

2 Mini Lua

Lua is dynamically typed, higher-order, scripting language with a Pascal-like syntax. It supports
basic values, such as booleans, numbers, and strings, as well as associative arrays (calledtables).
Tables are used to implement data structures and provide support for an object-oriented style of
programming.

We give an overview of the language features in the remainder of this section. More precise
descriptions of the syntax and semantics of Mini-Lua will be given in subsequent handouts.

2.1 Mini-lua values

Mini-Lua is a dynamically typed language, which means that variables do not have types; only
values do. There are no type definitions in the language. All values carry their own type and type
errors are signaled at runtime.

There are six basic types in Mini-Lua: nil, boolean, integer, string, function, and table. The first
four of these are the types of atomic values in Mini-Lua. Nil is the type of the valuenil , whose
main property is to be different from any other value; usually it represents the absence of a useful
value. Boolean is the type of the valuesfalse andtrue . In Mini-Lua, bothnil andfalse make
a condition false; any other value makes it true. Integer is the type of arbitrary precision integers.
Number represents real (double-precision floating-point) numbers. String represents arrays of 8-bit
characters. Strings may contain any 8-bit character, including embedded zeros. Functions are first-
class values in Mini-Lua, which means that they can be stored in variables, passed as arguments to
other functions, and returned as results.

1The Lua manual is available online atwww.lua.org .

The type table represents associative arrays, that is, arrays that can be indexed not only with
numbers, but with any atomic value (exceptnil). Moreover, tables can be heterogeneous, that
is, they can contain any non-nil value. Tables are the sole data structuring mechanism in Lua;
they may be used to represent ordinary arrays, symbol tables, sets, records, graphs, trees, etc. To
represent records, Lua uses the field name as an index. The language supports this representation
with syntactic sugar.

Like indices, the value of a table field can be of any atomic type (exceptnil). In particular,
because functions are first class values, table fields may contain functions. In this case, they are
calledmethods. Mini-Lua provides syntactic sugar for using tables to program in an object-oriented
style.

Tables and functions areobjects: variables do not actually contain these values, only references
to them. Assignment, parameter passing, and function returns always manipulate references to such
values; these operations do not imply any kind of copy.

2.2 Variables

Variables are mutable locations that store values (what are often calledl-values). There are three
kinds of variables in Mini-Lua: global variables, which have scope over the entire program; local
variables, which have scope local to the block they are defined in, and table fields. Local and global
variables are denoted by a single name. The field of a table is denoted using array-indexing notation
(e.g., a[i]). Mini-Lua uses string-valued indices to model labeled fields and provides the notation

Exp. Name

as shorthand for
Exp[" Name"]

2.3 Statements

Mini-Lua supports most of the statement forms found in Lua. These include assignment, control
structures, procedure calls, table constructors, and variable declarations (see Figure 1).

2.4 Expressions

Mini-Lua supports the full range expression forms found in Lua, with the exception of a more
limited syntax for table fields (see Figure 2).

2.5 Functions

Functions in Mini-Lua are first-class, which means that they can be passed as arguments, returned
as function results, and stored in tables. Named function declarations are a statement form (see
Figure 1), but Mini-Lua also provides anonymous functions as an expression form. The syntax of a
function is

Function
::= function FunctionBody

2

Block
::= (Stmt;)∗

Stmt
::= Vars= Exps
| FunctionCall
| do Blockend
| while Expdo Blockend
| if Expthen Block(elseif Expthen Block)∗ (else Block)opt end
| return Expsopt

| break
| for Name= Exp, Exp(, Exp)opt do Blockend
| for Namesin Expsdo Block end
| local opt function NameFunctionBody
| local Names= Exps

Figure 1: The syntax of Mini-Lua statements

FunctionBody
::= (Paramsopt) Blockend

Like SML and Scheme, Lua is a lexically-scoped language, which means that function values are
represented by closures.

Function calls are both a statement and expression form. The syntax of a function call is:

FunctionCall
::= PrefixExp Args
| PrefixExp: NameArgs

Args
::= (Expsopt)
| { (Field (, Field)∗)opt }

The second form for functions arguments is syntactic sugar for applying a function to a single table
argument.

The fact that functions can be stored in tables allows them to be used asmethods. The syntax

PrefixExp: Name(...)

is used for method dispatch. It evaluates as

let obj = PrefixExpin obj.Name(obj, ...)

2.6 Differences with Lua

The syntax and semantics of Mini-Lua are a subset of full Lua. Here is a list of the major differences:

3

Exps
::= Exp(, Exp)∗

Exp
::= Exp BinOp Exp
| not Exp
| - Exp
| PrefixExp
| Function
| { (Field (, Field)∗)opt }
| nil
| true
| false
| Number
| String

PrefixExp
::= Var
| FunctionCall
| (Exp)

Field
::= [Exp] = Exp
| Name= Exp

BinOp
::= or | and | < | > | <= | >= | ˜= | == | .. | + | - | * | / | ˆ

Figure 2: The syntax of Mini-Lua expressions

• Mini-Lua does not allow runtime coercions between strings and integers.

• Mini-Lua does not havemata-tables.

• Numbers in Mini-Lua are integers, not reals.

• There are a number of syntatic forms in Lua that are not in Mini-Lua: repeat-loops, field-
names for function definitions, implicitly index field definitions, and other quote characters
for string literals.

3 Project schedule

The following is a tentative schedule for the project assignments.

4

Assignment date Description Due date
Jan. 7 Lexer Jan. 23
Jan. 21 Parser Feb. 4
Jan. 28 Analyser Feb. 13
Feb. 16 Code generation and runtime Mar. 12

5

