
CMSC 22610
Winter 2004

Implementation
of

Computer Languages

Handout 5
February 17

Mini-Lua variable-binding semantics

This handout formalizes the rules for variable binding in Mini-Lua programs. We use a stripped-
down abstract syntax for Mini-Lua programs, which only includes variable and function definitions,
blocks, and variable uses (we uses for statements,e, for expressions, andf andx for variables).

s ::= s1; s2

| x = e
| local x = e
| do s end
| function f (x1, . . . , xn) s
| local function f (x1, . . . , xn) s
| if e then e1 else e2

e ::= x

Our “typing” judgements work on sets of globals (G) and environments (E), which are defined as
follows:

G ∈ 2Var

E ∈ Env = Var fin→ {local,glob}

The judgement forms areE ` s : 〈E′, G〉, which means that under environmentE, the state-
ments defines the envirnomentE′ and the set of globalsG, andE ` e Ok, which means that the
variables used ine are defined inE.

For statement sequencing, we use the environment from the first statement to check the second
and union the set of globals.

E0 ` s1 : 〈E1, G1〉 E1 ` s2 : 〈E2, G2〉
E0 ` s1; s2 : 〈E2, G1 ∪G2〉

A definition of a global variable extends the environment, assuming that the right-hand side is okay,
as well as adding to the set of globals.

E ` e Ok
E ` x = e : 〈E±{x 7→ glob}, {x}〉

A definition of a local variable also extends the environment, assuming that the right-hand side is
okay.

E ` e Ok
E ` local x = e : 〈E±{x 7→ local}, {}〉

A block localizes the environment (i.e., definitions do not escape), but note that the set of defined
globals does escape.

E ` s : 〈E′, G〉
E ` do s end : 〈E,G〉

Like a block, a function definition localizes the environment generated by its body. Note that the
body is checked in an environment that includes the function name itself.

E′ = E±{f 7→ glob} E′′ = E′±{x1 7→ local, . . . , xn 7→ local}
E′′ ` s : 〈E′′′, G〉

E ` function f (x1, . . . , xn) s : 〈E′, G〉

Local functions are similar to global functions.

E′ = E±{f 7→ local} E′′ = E′±{x1 7→ local, . . . , xn 7→ local}
E′′ ` s : 〈E′′′, G〉

E ` local function f (x1, . . . , xn) s : 〈E′, G〉

The conditional statement also localizes any definitions in its arms.

E ` e Ok E ` e1 : 〈E1, G1〉 E ` e2 : 〈E2, G2〉
E ` if e then e1 else e2 : 〈E,G1 ∪G2〉

Lastly, an expression is okay if its variables have been defined.

x ∈ dom(E)
E ` x Ok

2

