
CMSC 22610
Winter 2004

Implementation
of

Computer Languages

Project 1
January 7, 2004

Mini-Lua lexer
Due: January 23, 2004

1 Introduction

Your first assignment is to implement a lexer (or scanner) for Mini-Lua, which will convert an input
stream of characters into a stream of tokens. While such programs are often best written using a
lexer generator(e.g., ML-Lex or Flex), for this assignment you will write a scanner from scratch.

2 Mini-Lua lexical conventions

Mini-Lua has four classes oftoken: identifiers, delimiters and operators, numbers, and string literals.
Tokens can be separated bywhitespaceand/orcomments.

Identifiers in Mini-Lua can be any string of letters, digits, and underscores, not beginning with
a digit. Identifiers are case-sensitive (e.g., foo is different fromFoo). The following identifiers are
reserved as keywords:

and break do else elseif
end false for function if
in local nil not or

repeat return then true until while

Note that these are the keywords of Lua;repeat anduntil are reserved in Mini-Lua, but not
used.

Mini-Lua also has a collection of delimiters and operators, which are the following:

+ - * / ˆ =
˜= <= >= < > ==
() { } []
; : , . ..

Numbers in Mini-Lua are integers and are their literals are written using decimal notation (with-
out a sign).

String literals are delimited by matching double quotes and can contain the following C-like
escape sequences:

\a — bell (ASCII code 7)
\b — backspace (ASCII code 8)
\f — form feed (ASCII code 12)
\n — newline (ASCII code 10)
\r — carriage return (ASCII code 13)
\t — horizontal tab (ASCII code 8)
\v — vertical tab (ASCII code 11)
\\ — backslash
\" — quotation mark

A character in a string literal may also be specified by its numerical value using the escape sequence
‘ \ ddd,’ whereddd is a sequence of three decimal digits. Strings in Lua may contain any 8-bit value,
including embedded zeros, which can be specified as ‘\000 .’

Comments start anywhere outside a string with a double hyphen (--). If the text immediately
after-- is different from[[, the comment is a short comment, which runs until the end of the line.
Otherwise, it is a long comment, which runs until the corresponding]] . Long comments may run
for several lines and may contain nested[[/]] pairs.

Whitespace is any non-empty sequence of spaces (ASCII code 32), horizontal or vertical tabs,
form feeds, newlines, or carriage returns. Any other non-printable character should be treated as an
error.

3 Requirements

Your implementation should include (at least) the following two modules:

structure LuaLexer : LUA_LEXER
structure LuaTokens : LUA_TOKENS

The signature of theLuaLexer module is

signature LUA_LEXER =
sig

val lexer : ((char, ’a) StringCvt.reader)
-> (LuaTokens.token, ’a) StringCvt.reader

end

TheStringCvt.reader type is defined in the SML Basis Library as follows:

type (’item, ’strm) reader = ’strm -> (’item * ’strm) option

A reader is a function that takes a stream and returns a pair of the next item and the rest of the stream
(it returnsNONEwhen the end of the stream is reached). Thus,lexer is a function that takes a
character reader and returns a token reader.

The signature of theLuaTokens module should have the following form:

2

signature LUA_TOKENS =
sig

datatype token
= EOF
| KW_and
| KW_break
| KW_do
| ...
| KW_while
| PLUS | MINUS | TIMES | DIV | EXP | DOTDOT
| NOTEQ | LTE | GTE | LT | GT | EQEQ
| EQ | DOT | COLON
| COMMA | SEMI
| LP | RP
| LCB | RCB (* ’{’ ’}’ *)
| LSB | RSB (* ’[’ ’]’ *)
| NAME of Atom.atom
| NUMBER of IntInf.int
| STRING of string

end

The EOF token is used to mark the end of stream. The other tokens correspond to the various
keywords, delimiters and operators, and literals. TheNAMEtoken is for non-reserved identifiers and
carries a unique string representation of the identifier. TheNUMBERtoken carries the value of the
literal, as does the string representation.

3

