
CMSC 22610
Winter 2004

Implementation
of

Computer Languages

Project 2
January 21, 2004

Mini-Lua parser
Due: February 4, 2004

1 Introduction

Your second assignment is to implement a parser for Mini-Lua. You will use ML-Yacc to generate
a parser from an LALR(1) specification (see Chapter 3 of Appel’s book). The actions of this parser
will construct aparse treerepresentation for a Mini-Lua program. In addition to writing the parser,
you will also be responsible for defining the SML datatypes that represent the parse tree.

2 The Mini-Lua grammar

The concrete syntax of Mini-Lua is specified by the grammar given in Figures 1 and 2. To make
this grammar unambiguous, the precedence of operators must be specified. They are (from weakest
to strongest):

or
and

< > <= >= ˜= ==
..
+ -
* /

not - (unary)
ˆ

All binary operators, except “.. ” (concatenation) and “ˆ ” (exponentiation), are left associative.

3 Requirements

Your implementation should consist of the following five files:

mini-lua.cm — a CM sources file for compiling your project.

main.sml — An SML source file containing the definition a structureMain , that defines a func-
tion

Block
::= (Stmt;)∗

Stmt
::= Vars= Exps

| FunctionCall
| do Blockend
| while Expdo Blockend
| if Expthen Block(elseif Expthen Block)∗ (else Block)opt end
| return Expsopt

| break
| for Name= Exp, Exp(, Exp)opt do Blockend
| for Namesin Expsdo Blockend
| local opt function NameFunctionBody
| local Names= Exps

Exps
::= Exp(, Exp)∗

Exp
::= Exp BinOp Exp

| not Exp
| - Exp
| PrefixExp
| Function
| { (Field (, Field)∗)opt }
| nil
| true
| false
| Number
| String

PrefixExp
::= Var

| FunctionCall
| (Exp)

Field
::= [Exp] = Exp

| Name= Exp

BinOp
::= or | and | < | > | <= | >= | ˜= | == | .. | + | - | * | / | ˆ

Figure 1: The concrete syntax of Mini-Lua (A)

2

Vars
::= Var (, Var)∗

Var
::= Name

| PrefixExp[Exp]
| PrefixExp. Name

Function
::= function FunctionBody

FunctionBody
::= (Paramsopt) Blockend

FunctionCall
::= PrefixExp Args

| PrefixExp: NameArgs

Args
::= (Expsopt)

| { (Field (, Field)∗)opt }

Figure 2: The concrete syntax of Mini-Lua (B)

val parseFile : string -> LuaParseTree.program

whereLuaParseTree.program is the type of program parse trees. This function should
open the named source file, parse it, and return the resulting tree.

lua-parse-tree.sml — An SML file containing a moduleLuaParseTree that defines the
parse-tree representation of Mini-Lua programs.

lua.y — An ML-Yacc specification file for parsing Mini-Lua programs. The actions of this parser
should construct parse tree nodes.

lua.l — An ML-Lex specification file for lexing Mini-Lua. We will provide an skeleton for this
file. You may also choose to use a modified version of the lexer you wrote for Part 1 of the
project.

4 Document history

Jan. 30 Added missing grammar rules for functions and function calls.

Jan. 27 Added missing grammar rules for variables.

Jan. 21 Original version.

3

