
CMSC 22610
Winter 2004

Implementation
of

Computer Languages

Project 3
February 4, 2004

Mini-Lua analyser
Due: February 16, 2004

1 Introduction

Your third assignment is to implement an sytactic analyser for Mini-Lua. Since Mini-Lua is a
dynamically typed language, this analyser is not responsible for typechecking. The main job of the
analyser is to identify the binding sites of variables and to determine the free variables of function
definitions. It also needs to check some additional syntactic correctness properties that are not
caught by the parser. The result of analysis will be atyped abstract syntax tree(or AST for short)
and associated symbol table. The AST and symbol table should have the following properties:

• Each distinct named variable should have a symbol table entry, which marks the variable as
local or global.

• Each variable occurrence should refer to the corresponding table entry.

• Each function definition should be annotated with the free variables in the function.

• Derived forms (see below) should be represented by their expansion.

2 Correctness properties

In addition to resolving the bindings of identifiers, your program should check for the following
possible errors:

• undeclared variables (all variables should be declared before use)

• break andcontinue statements outside loops

• table expressions that define the same field multiple times

• multiple occurrences of a name in a function parameter list

Your program should report the location of the error and continue checking the input.

3 Derived forms

In the abstract syntax, we have expanded various derived forms from the concrete syntax into their
semantic equivalents. This expansion simplifies the intermediate representation and reduces the
work of code generation.

We use the following expansions:

• The variable form “e. f ” is replaced with “e[" f "] ”.

• The field form “f = e” is replaced with “[" f "] = e”.

• The function argument form “{ Fields} ” is replaced with “({ Fields}) ”.

• The statement form

for i = e1, e2 do Blockend

is replaced with

for i = e1, e2, 1 do Blockend

• The statement form

for i = e1, e2, e3 do Blockend

is replaced with

do local
start, stop, step = e1, e2, e3

function iter (x, y) {
if (x == stop) return nil ;
x = x + step;
return x

}
for i in (iter, start, nil) do Block end

end

Note that here we are assuming thatstart , stop , step , anditer are fresh variables.

4 Requirements

Your implementation should include a filemain.sml that defines the structure

structure Main : sig
val main : (string * string list) -> OS.Process.status

end = ...

The second argument tomain will be the command-line arguments; your program should treat
them as file names. Assuming that your CM file is calledmini-lua.cm , you can compile your
program using the following shell command:

ml-build mini-lua.cm Main.main mini-lua

This command will produce a heap file that you can run using the command

sml @SMLload=mini-lua

2

