CMSC 22610 Implementation Project 4
Winter 2004 of February 23, 2004
Computer Languages

Mini-Lua interpreter
Due: March 12, 2004

1 Introduction

The last programming project is the implementation of an interpreter for Mini-Lua. This part of
the project involves two steps. First, the abstract syntax tree (AST) produced in Part 3 must be
converted teexecutable tre€¢ET) format. Then you must implement an interpreter for ET.

2 A core semantics for Mini-Lua

To guide your implementation effort, we describe in this section an operational semantics for a
significant subset of Mini-Lua.

2.1 Abstract syntax

The dynamic semantics of Mini-Lua is given in terms of the abstract syntax of a core subset of the
language. This syntax is given in Figure 1. We ug&¥o denote the set of Mini-Lua variables and
STMT to denote the set of terms that represent statements.

2.2 Locations

Mini-Lua is an imperative language, so need a notion of location in our semantics. Environments
map variables to locations, while the store maps locations to values.

p € Loc locations
f .
I' ¢ Env=VAR™ Loc environments
.
Y ¢ STore= Loc™ VALUE stores

2.3 Values

Values in Mini-Lua are either primitiven(l, booleans, numbers, or strings), functions, or tables.
Functions are represented by closures, while tables are represented by locations, which in turn are

S1; 82

l=e

e(er, ..., en)

do s end

while edo s

if ethen s else ss

return e
function f(z1, ..., xn) s
local function flxy, ... xpn) s
local z=e
Il == =z
| elel
e == b
| 1
| eler, ..., en)
| {l el=¢),....[en]= €3}
b == nil|true|false|---

Figure 1: Abstract syntax for Core Mini-Lua

mapped to finite functions from values to locations.

v € VALUE = PRIMUCLOSULOCU TABLE values
b € PRIM = {nil, true, false, ...} primitive values
T, (z1, ..., ®p),s] € CLOS= ENV x VAR* x STMT closures
© € TABLE = (VALUE \ {nil}) ™ Loc tables
We use the notatioff’, (x1, ..., x,),] for a closure with environmerit, parameters, ..., x,,
and bodys.

2.4 Evaluation judgments

The dynamic semantics of Mini-Lua are specified using five evaluation judgment forms. For pro-
grams, the judgment
S, Tkpl

states that starting with an initial stoke and initial environment’, the progranp runs to com-
pletion. For statement evaluation, we have a small complication that is required to handle function
returns. The result of evaluating an expression is either a store/environment pair

2T Fs= YT

or a return value/store pair
¥,TF s = Ret(v,Y)

We useR to denote the result of evaluating a statement, when the form it takes does not matter.
Function applications for both statements and expressions are described by the application evalua-
tion judgment.

Y.,'ke(er,...,en) =R

Expression evaluation is broken into two evaluation judgment forms. One for evaluating left-hand-
side expressions, which return locations,

ST HI=p Y
and one for evaluation right-hand-side expression

Y The= oY

2.5 Program evaluation
Let Global(p) be the set of global variables in the progranThen the rule for program evaluation
is:

Yo ={pz — nil |z € Global(p)} Ty ={zr p,; |z € Global(p)} Xo,ToFp=3 T
EU? I‘0 F p ‘U’

2.6 Statement evaluation
We evaluate sequences of statements from left to right, propagating the store and environment. If
we hitareturn statement, then evaluation is short-circuited.

Z,Fl—sl :>21,F1 21,1“1 |—82 :>22,F2
Y, I s1; 89 = 39,19

Y, T+ s1 = Ret(v,Y)
Y, Tk s1; s2 = Ret(v,Y)
Assignment modifies the store, but has no effect on the environment.

Y2 IEI=pY Y Tke=o X
YTkl=e=Y+{p—v},T

There are two cases for function evaluation, depending on if the function returns a value.

X, Tkeler, ..., e,) = Ret(v,Y)
Y. Tke(er,...,ep) =X T

Y. T keler,...,e,) =X TV
Y.P'ke(er,...,ep) =% T
Blocks limit the scope of the environment.

U2, I'ks= YT
,'+dosend = ¥ T

Y, I'F s = Ret(v,Y)
Y,I'-do send = Ret(v,Y)

3

While loops terminate when either the conditiofadse, or areturn statement is executed in the
loop body.
Y, '+ e = false, Y/

X, I'while edos= X T
U, I'Fe=true, X Y T'ts=X"T" ¥ THFwhile edos=X"T
X, I'while edos= X" T
Y, Tke=true, X Y Tt s= Ret(v,X")
Y, I while edo s= Ret(v,X")
If statements test their condition and then execute the appropriate branch.
Y., I'kFe=true, X Y T'ks =X,
Y, T'Hif ethen s;else sy = ¥,T
Y, Tke=true,X Y TF s = Ret(v,X)
Y, THif ethen s;else so = Ret(v, %)
Y, I'Fe=false, X Y/ Tk sy= 35T
X, I'Hif ethen s;else sy =%, T
Y,I'Fe=false,> Y/ TF sy = Ret(v,Xs)
N, THif ethen s;else sy = Ret(v,X)
The return statement returns a value/store pair.

U, I'Fe=vY
Y, I'Freturn e = Ret(v,%’)

A function definition modifies the store to map the function name to a newly formed closure value.

p=T(f) Ty=T1FEV(s)\ {1, ..., zn})
Y, I'Ffunction f(x1, ..., zn) s = Xx{p— [y, (21, ..., zpn), 8]}, T

A local function definition binds the function name to a new location, which is initialized to hold a
closure.
pgdom(S) Ty=T | (FV(s)\ {1, ..., za})
¥, T F local function [z, ..., zp) s = Sx{p— [Ty, (21, ..., zp),s]},T

A local variable declaration binds the variable name to a new location, which is initialized to hold
the value of the right-hand side expression.
Y Tke=0vY pédom(Y)
Y, I'Flocal z=e= YX+{p— v}, I't{z — p}

2.7 Function application evaluation

Applying a function requires first evaluating the function expression and argument expressions from
left to right and then applying the function’s closure to the argument values.

Y Tkhe= [TV, (x1,...,2p),8],%
Z’,Fl—el = v,%51 o Zp 1, Fen=vn, 2,
Yo, UV't{z1—v,...;2n— v} Fs=R
Y.,I'ke(er,...,en) =R

2.8 Left-hand side evaluation

Left-hand side expressions evaluate to locations. For variables, this means looking up the location
in the environment.
p=T(z)

S TFa=3(p),X%
Tables map values to locations; if no mapping exists, a new one is added.

2,FF61:>p,21 21,P|—62:>v,22 Eg(p):@ UEdOHl(@)
E,Fl—el[62] :>6)(v),22

E,F}—€1:>p,21 Zl,I‘I—eQ:>v,Eg
Yo(p) =0 v dom(O) v#nil p & dom(Xy)
YT Fele] = p,Yat{p+— O+{v— p'}, p/ — nil}

2.9 Expression evaluation

Primitive values evaluate to themselves.

X, THFb=b%
Lef-hand-side values evaluate to the value stored at their location.

S THI=p Y
ST F1= Y(p),y

A function call evaluates to its return value (if there is no return value, then a runtime error has
occurred).
Y, Tteler, ..., en) = Ret(v,Y)
YT keler, ..., en) =03
Table expressions are evaluated from left to right (note that if multiple fields have the same index,
then the rightmost field will define the value). The result of a table expression is the table’s location.

E,FF€1:>’U1721 El,I‘Fe'lzw/l,E’l

Y i They,=uv,,%, X, ke, =0, X
v; # nilfor i € [1..n]
Py P1y - pn & dom(3))) are unique
@:{Uall}i---i{vann}
Y=Y +{p—0,p =, ..., pp—u,}

EH{[e]=¢€),....[en]= €} = p, %

3 Builtin functions

Your implementation should include support for the following builtin Mini-Lua functions:
error (msgQ)

Print the messagmsgto the standard error stream and terminate the Mini-Lua interpreter.
This function does not return any results.

5

loadfile (filename)
Loads a file as a Mini-Lua chunk (without running it). If no errors are returned, then it returns
the compiled chunk as a function, otherwise it retuiiis Errors loading the file are reported
to the standard error stream. Note that this operation will extend the global environment of
the program.

next (table, index)
Return the next element tdible afterindex The order of table entries is undefinednif is
given as the index, then the first element in the table is returned.

print (s)
prints the stringsto the standard output. This function does not return any results.

tonumber (s)
convertss, which should be a decimal string, to a number. Leading and trailing whitespace is
ignored;nil is returned if there is an error.

tostring (value)
Returns a string representationvalue For primitive values, this string should be the repre-
sentation of the value, for functions it should'sdgunction>" and for tables it should be
"<table>"

type (value)
Returns the type ofalueencoded as a string. The possible results'ané: |, "number"
"string" ,"boolean" |, "table" ,and"function”

string.byte (s,i)
Returns the integer value of i character in the string Returnanil if there is an error.

string.len (s)
Returns the length of the strirggpr elsenil if sis not a string.

string.sub (s,ih))
Returns the substring sffrom indexi to j (inclusive). Ifi is greater thai, then it returns the
empty string. It returnsil if there is a type error.

4 Requirements

We will supply the execution tree representation. Your job will be to do the following three things:

e Extend your typechecker to handle the builtin functions.
e Translate the AST produced by your typechecker to the execution tree format.

e Write an interpreter for the execution tree format.

The assignment is due on the last day of classes (March 12).

