
Algorithms – CS-27200/37000 Homework – January 30, 2004
Instructor: László Babai Ry-164 e-mail: laci@cs.uchicago.edu

ADVICE. Take advantage of the TA’s office hours Monday, Tuesday and
Thursday 5–6pm in the Theory lounge (Ry–162).

DATES TO REMEMBER. Wed Feb 4: Midterm 1; Mon Feb 23: Quiz 2.

HOMEWORK. Please print your name on each sheet. Print “U” next to
your name if you seek 27200 credit and “G” if you seek 37000 credit. Please
try to make your solutions readable. Unless expressly stated otherwise, all
solutions are due at the beginning of the next class.

Homework is collected in three separate piles (U, G, “G only”).
Please write your solutions to graduate problems on separate sheets.

10.1 (U,G) (5 points) Given an undirected graph G by an array of adjacency lists,
determine the degree of each vertex and sort the vertices by degree in
linear time. Write a very simple pseudocode.

10.2 (U,G) (6 points) Recall that a digraph is strongly connected if every vertex is
accessible from every vertex. Given a digraph G = (V,E) by an array
of adjacency lists, decide in linear time whether or not G is strongly
connected. Your solution should be very simple, only 3 essential lines
based on facts discussed in class or previously assigned as homework.

10.3 (G only) (5 points) Prove: it takes fewer than 3n/2 comparisons to find both
the maximum and the minimum of n keys from a linearly ordered
universe. Give a simple algorithm.

10.4 (G only) (6 points) Let us consider a set S of n = 5k items from a linearly
ordered universe. Let us divide S into k groups of 5 each: S = S1 ∪
. . . ∪ Sk, where |Si| = 5 and the Si do not overlap. Let mi be the
median of Si and let M = {m1, . . . ,mk}. Let x be the median of M .
Prove that the rank of x in S is at least 0.3 and at most 0.7, i. e., x is
between the 30th and the 70th percentiles of S.

10.5 (U,G) (Due Monday, February 9) Let G = (V,E) be an undirected graph.
Assume every vertex of G has degree ≤ 45. (The degree of a vertex is
the number of its neighbors.) We wish to color the vertices red and
blue (each vertex gets exactly one color) such that each vertex will
have at most 22 neighbors of its own color. (Note that this is not a
legal coloring in the sense of the definition of the chromatic number.)
Show that this is always possible, using the following algorithm (given
here in pseudocode).

1

procedure Lovász-toggle

1 Initialize by coloring each vertex arbitrarily
2 Call a vertex “bad” if it has more than 22 neighbors of its own color
3 BAD := set of bad vertices
4 while BAD 6= ∅
5 pick a bad vertex
6 recolor it
7 update BAD
8 end(while)

(a) (8 points) Prove that this algorithm will terminate in a finite
number of steps. (Give a very simple and convincing argument,
no more than 5 or 6 lines.) Give an upper bound on the num-
ber of cycles of the while loop in terms of the basic parameters
|V |, |E|. Hint. Call the graph with a coloring a “configuration.”
With each configuration, associate an integer (the “potential”)
in such a way that each round of the Lovász-toggle reduces the
potential. This will give a bound on the number of rounds. Note
that “the number of bad vertices” is NOT an appropriate poten-
tial function: it can increase.

(b) Show that statement (a) becomes false if 45 is increased to 46 (but
the number 22 remains unchanged). Construct graphs where each
vertex has degree ≤ 46 and where

(i) (2 points) the algorithm never terminates, regardless of the
initial coloring and the choice of bad vertex made in line 5;

(ii) (3 points) for some initial colorings and some choices of the
bad vertex the algorithm will terminate, for others it will not.

(c) (Grad only; 5 points) Modify the above algorithm to achieve the
following objective: each red vertex must have at most 25 red
neighbors and each blue vertex must have at most 19 blue neigh-
bors. Prove statements (a) and (b) above for the modified algo-
rithm.

10.6 (Due Monday, February 16) CAR RACE PROBLEM. The solution
should be short, elegant, and convincing.

Let R be a subset of the (n + 1)2 points in the plane with integer
coordinates between 0 and n. We call R the “race track.” One of the
points of R is designated as the start (S), another as the goal (G).

The points are represented as vectors (i, j). Cars are particles sitting
on a point at any time. In one unit of time, a car can move from
a point of R to another point of R, say from (i1, j1) to (i2, j2). The
speed vector of the car during this time unit is defined as the vector
(i2 − i1, j2 − j1).

2

The acceleration/deceleration of the car is limited by the following
constraint: from any one time unit to the next one, each coordinate
of the speed vector can change by at most one.

For instance, if during time unit 6 the car was moving from point
(10, 13) to point (16, 12) then its speed vector was (6,−1) during this
move; during the next time unit, the following are its possible speed
vectors and corresponding destinations:

speed during destination at the end of
time unit 7 time unit 7

(7, 0) (23, 12)
(7,−1) (23, 11)
(7,−2) (23, 10)
(6, 0) (22, 12)
(6,−1) (22, 11)
(6,−2) (22, 10)
(5, 0) (21, 12)
(5,−1) (21, 11)
(5,−2) (21, 10)

Of course only those locations are legal which belong to R (the car
cannot leave the race track).

During time unit 0, the car rests at Start with speed (0, 0). The
objective is to decide whether or not the Goal is reachable at all and
if so, to reach it using the minimum number of time units.

(a) (15 points) Solve this problem in O(|R| · n2) time. Describe your
solution in clear English statements. Pseudocode not required.
Algorithms discussed and analysed in class can be used as subrou-
tines. Prove that your algorithm runs within the time claimed.
Hint. Use BFS. The difficulty is in constructing the right graph
to which to apply BFS. Do not overlook the fact that an optimal
route of the car may visit the same location several times (at dif-
ferent speeds). (Construct an example where the optimal route
visits the same point 100 times. Do not hand in the answer to
this parenthetical, though enlightening, question.)

(b) (G only, 10 points) Solve the problem in O(|R| ·n) time and space.
(Note that you are not permitted to use an array with more than
O(|R| ·n) cells because of the space constraint.) (Hint: it is likely
that you need only a minor modification of the algorithm you
gave for (a) together with a more clever analysis.)

3

