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Branch-and-bound: improved exponential time bounds

Maximum independent sets in graphs
Instructor: László Babai

In this note, graph means undirected graph without loops. An independent
set in a graph G = (V,E) is a set S ⊆ V such that no pair of vertices in S is
adjacent (there are no edges within S). In other words, in the complement
of G, the subset S is a clique.

Let α(G) denote the maximum size of independent sets in G. The prob-
lem is to determine α(G). This problem is “NP-hard,” so we don’t expect
it to be solvable in polynomial time. Our goal is to improve over the brute
force method which would perform an exhaustive search of the search space.

The search space consists of all subsets of V . If |V | = n then the size of
the search space is 2n.

We can search the search space by organizing it as a binary tree; at each
node, we make a decision whether or not to include a particular vertex into
S. This tree has depth n and it has 2n leaves.

While tracing this tree, we can cut off entire branches when we recognize
that nothing in that branch can lead to optimum; or we recognize that within
that branch, we have an easier way to find the optimum.

Our goal is to show that simple “branch-and-bound” ideas can be anal-
ysed and lead to considerably better bounds than 2n (although the bounds
will still be exponential).

For a vertex v ∈ V , let N(v) denote the set of neighbors of v plus v
itself. Let G \ v denote the graph G with v deleted; and G \N(v) the graph
G with the entire neighborhood of v (including v itself) deleted. Note that
|N(v)| = deg(v) + 1.

The key observation is the following, dynamic-programming-style equa-
tion.

Observation. If n ≥ 2 then for any v ∈ V ,

α(G) = max{α(G \ v), 1 + α(G \N(v))}. (1)

(The first value corresponds to the decision v 6∈ S, the second to v ∈ S.)
This equation corresponds to an evident recursive algorithm. (DO: Write

the algorithm in pseudocode. It should be a few lines only.)
The algorithm reduces an instance with n vertices to two instances, one

with n − 1, and the other with n − deg(v) − 1 vertices. The cost of the
reduction is O(n2). This gives us the recurrence

T (n) ≤ T (n− 1) + T (n− deg(v)− 1) +O(n2). (2)

It is plausible then, that we should always choose v to have maximum degree
(so the right-hand side of inequality (2) will be minimized). (Modify your
pseudocode to reflect this choice!) Now inequality (2) will read

T (n) ≤ T (n− 1) + T (n− degmax−1)) +O(n2), (3)

where degmax is the maximum degree.
Now, if degmax = 0 then the graph has no edges, and we declare α(G) = n

without any further recursive calls. (DO: Modify the pseudocode to reflect



this change!) Notice that at this point, we eliminated an entire branch of
the tree (we “bounded the search.”) Let us see what this evident step buys
us. We notice that inequality (3) now implies

T (n) ≤ T (n− 1) + T (n− 2) +O(n2), (4)

since in the case degmax = 0, no work is needed (except to establish this fact,
which takes only O(n) steps); in all other cases, T (n− degmax) ≤ T (n− 2).

We have shown (see the “Evaluation of recurrent inequalities” handout)
that the solution to this recurrence is T (n) = O(φn) where φ = (1+

√
5)/2 ≈

1.618 is the golden ratio.
With a simple additional trick we can further improve on this bound.

Theorem. α(G) can be computed in O(ψn) steps, where ψ > 1 satisfies the
equation ψ4 = ψ3 + 1 (so ψ ≈ 1.381).

The trick is based on the following observation:

Observation. If degmax ≤ 2 then each connected component of G is a path
or a cycle. (Paths of length zero are permitted, they are isolated vertices.)
(Prove!)

It is straightforward to find α(G) for such a graph in O(n) time. (How?)
We modify the algorithm so that we use the recurrence (1) only when

degmax ≥ 3.

1 if maxdeg ≤ 2 then
2 find α(G) in time O(|V |)
3 else
4 find v ∈ V such that deg(v) = degmax

5 recursively compute α(G \ v) and α(G \N(v))
6 α(G) := max{α(G \ v), 1 + α(G \N(v))}
7 end(if)
8 return α(G)

This algorithms leads to the recurrence

T (n) ≤ T (n− 1) + T (n− 4) +O(n2), (5)

because lines 5–6 become active only when degmax ≥ 3.
The analysis of inequality (5) is analogous to the analysis of the Fibonacci

recurrence (4) discussed in the “Evaluation of recurrent inequalities” hand-
out. Ignoring first the O(n2) term, we look for a solution to the reverse
inequality in the form of g(n) = ψn. This means ψn ≥ ψn−1 + ψn−4; divid-
ing each side by ψn−4 we obtain ψ4 ≥ ψ3 + 1. We want ψ to be as small as
possible subject to this condition; this means ψ4 = ψ3 + 1. Only one pos-
itive number ψ satisfies this equation; the solution is ψ ≈ 1.341. As usual,
we take the O(n2) term into account by looking for a solution of the reverse
inequality g(n) ≥ g(n− 1) + g(n− 4) +Cn2 in the form g(n) = Aψn−Bn2,
with appropriate constants A,B. (DO: work out the details!)


