Algorithms — CS-27200/CS-37000
Dynamic programming: the knapsack problem

The input of the “Knapsack Problem” is a list of weights w1, ..., wy,, a
list of values v1,...,v,, and a weight limit W. All these are positive reals.
The problem is to find a subset S C {1,...,n} such that the following
constraint is observed:
> wp <W. (1)
kesS
The objective is to maximize the total value under this constraint:

max <« Z V.- (2)
keS
Theorem. Under the assumption that the weights are integers (but the
values are real), one can find the optimum in O(nW) operations (arithmetic,
comparison, bookkeeping).

The solution illustrates the method of “dynamic programming.” The
idea is that rather than attempting to solve the problem directly, we em-
bed the problem in an n x W array of problems, and solve those problems
successively.

For 0 <i<mnand0<j<W,let m[i,j] denote the maximum value of
the knapsack problem restricted to S C {1,...,4}, under weight limit j.

The heart of the solution is the following recurrence.

m[’l,j] :max{m[i—l,j], vz—i—m[z—l,j—wz]} ©
Ezxplanation: if in the optimal solution i ¢ S then mli,j| = m[i — 1, ];
otherwise we gain value v; and have to maximize from the remaining objects
under the remaining weight limit j — w; (assuming j > w;). The optimum
will be the bigger of these two values.

It should also be clear that m|0, k] = m[k,0] = 0 for all £ > 0. With this
initialization, a double for-loop fills in the array of values m|i, j]:

Initialize (lines 1-6):

1 for i =0ton
2 m[i,0] := 0
3 end
4 for j=1to W
5 m[0, j] :=0
6 end
Main loops:
7 fori=1ton
8 for j=1to W
9 if 7 < w; then m[i,j] :=ml[i —1,j] (* item i cannot be selected *)
10 else m[i, j| := as in equation O  (* heart of solution *)
11 end
12 end

The statement inside the inner loop expresses the value of the next mi, j]
in terms of values already known so the program can be executed.

The required optimum is the value m[n, W]. Evaluating equation ©
requires a constant number of operations per entry, justifying the O(nW)
claim.



