
Algorithms – CS-27200/37000
Evaluation of recurrent inequalities

László Babai

In this handout, we discuss a typical situation in the analysis of algo-
rithms: the number of steps required by the algorithm satisfies some recur-
rent inequality; from this we want to infer an upper bound on the order of
magnitude of the number of steps. We illustrate the method on a specific
recurrent inequality which will occur in class in the analysis of a “branch-
and-bound” algorithm.

Suppose we have an algorithm which takes at most T (n) steps on all
inputs of size n. Suppose in addition that T (n) is known to satisfy the
following recurrent inequality:

T (n) ≤ T (n− 1) + T (n− 2) (n ≥ 2) (1)

How can we use this information to give a good upper bound on T (n)?

Theorem 1. Suppose the function g(n) > 0 has the following property:
there exists a threshold value n0 such that for all n ≥ n0 the inequality

g(n) ≥ g(n− 1) + g(n− 2) (2)

holds. Then T (n) = O(g(n)).

Warning. Note that inequality (2) is the same as inequality (1) except that
it goes in the opposite direction!

Proof: First, let us choose a positive constant C such that

(a) Cg(n0) ≥ T (n0), and

(b) Cg(n0 + 1) ≥ T (n0 + 1).

(The choice C := max{T (n0)/g(n0), T (n0 +1)/g(n0 +1)} will do.) Now we
claim that for all n ≥ n0, the inequality

T (n) ≤ Cg(n) (3)

holds. This clearly justifies the T (n) = O(g(n)) claim. (Note that on the
basis of the data given, we have no information about the magnitude of the
constant C implicit in the big-oh notation.)

1



The proof of inequality (3) is an easy application of mathematical in-
duction. By inequalities (a) and (b) we know that inequality (3) holds for
n = n0 and n = n0 + 1 (starting cases).

For the inductive step, let now n ≥ n0+2 and assume that T (k) ≤ Cg(k)
holds for all k in the interval n0 ≤ k ≤ n−1. Under this inductive hypothesis
we need to prove that T (n) ≤ Cg(n).

Indeed,

T (n) ≤ T (n− 1) + T (n− 2) ≤ Cg(n− 1) + Cg(n− 2) ≤ Cg(n). (4)

(The first inequality is just inequality (1); the second inequality holds
by the inductive hypothesis; and the third inequality comes from inequality
(2).) This completes the inductive step, and thereby the inductive proof of
Theorem 1. Q. E. D. [End of proof, from the Latin “Quod erat demonstran-
dum”.]

Questions.

1. Why did we need to verify two starting cases (n = n0, n0 + 1) (rather
than just one starting case)?

2. Why did g(n) need to satisfy the reverse of the recurrent inequality
satisfied by T (n)? (Where and how did the proof exploit this condi-
tion?)

3. Prove that T (n) ≤ 2T (n− 1) for n ≥ 4.

4. Infer from item 3 that T (n) = O(2n).

5. Prove that g(n) ≥ 2g(n− 2) for n ≥ n0 + 3.

6. Infer from item 5 that g(n) = Ω(2n/2).

The next step in evaluating the recurrence (1) is to find some function g(n)
satisfying inequality (2). Item 4 above suggests the choice g(n) := 2n.
Indeed, 2n > 2n−1 + 2n−2 (why?). But this may not be the smallest such
g(n). The upper bound in item 4 and the lower bound in item 6 together
suggest that we should be looking for an exponential function, of the form
g(n) = αn (geometric progression) for some fixed α > 1, and try to find the
smallest such α in order to obtain the best possible upper bound. (From
item 6 we know that any such α must be ≥

√
2.) The condition then is

αn ≥ αn−1 + αn−2; (5)

2



or equivalently (dividing by αn−2),

α2 ≥ α + 1. (6)

Recall that we wish to minimize α. The smallest value of α > 1 that satisfies
(6) actually gives equality:

α2 = α + 1. (7)

This is a quadratic equation. Of the two solutions, one is negative and
therefore has no meaning in our context; the other solution is

α = φ :=
1 +

√
5

2
≈ 1.6180339 (8)

(this is the golden ratio).
The following summarizes our conclusion:

Theorem 2. If the function T (n) ≥ 0 satisfies inequality (1) then

T (n) = O(φn)

where φ is the golden ratio (equation (8)).

Comment. Of course T (n) could be much smaller; what we have is an upper
bound. However, this is the best upper bound that can be inferred from the
information given (inequality (1)), as demonstrated by the example of the
Fibonacci sequence in the role of T (n).

Remark. The Fibonacci sequence is the sequence defined by the recurrence
Fn = Fn−1 + Fn−2 with initial values F0 = 0 and F1 = 1. (So the first few
terms of the sequence are 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89.) The asymptotic
value of Fn is Fn ∼ φn/

√
5.

* * * * *

“Divide and Conquer” algorithms are the most frequent sources of recurrent
inequalities. We illustrate the method on the recurrence arising from the
Karatsuba–Ofman integer multiplication algorithm.

For simplicity we assume n = 2k. Let B(n) be the number of bit-
operations required by the K-O algorithm to multiply two n-digit integers.
We do not ignore additions/subtractions. The inequality then is:

B(n) ≤ 3B(n/2) + O(n). (9)

3



We cannot handle the O(n) term directly because it is not a well-defined
quantity: all we know about it is that it is between −Cn and Cn for some
positive constant C (for all n ≥ 1). With this (unknown, but constant)
value of C we obtain the inequality

B(n) ≤ 3B(n/2) + Cn. (10)

Now all terms of the inequality are sufficiently well defined to allow us to do
basic operations with them.

Theorem 3. If the function B(n) ≥ 0 satisfies inequality (10) then B(n) =
O(nα) where α = log 3 ≈ 1.58.

Again, we need to find a function g(n) which satisfies the reverse of inequality
(10) for n ≥ n0 and g(n) > 0 for all n ≥ 1. Then, as before, we shall know
that B(n) = O(g(n)).

We try to find g(n) in the form g(n) = Anα−Dn for some constants A >
0 and D. The reason for this choice will be apparent from the calculations
below; here we only note that we are entitled to look for g(n) in any form
we like; the eventual success justifies a good choice.

For our choice to be good, we need to be able to find a value of the
constant D such that

Anα −Dn ≥ 3 (A(n/2)α −Dn/2) + Cn

holds for all n.
Observing that nα = 3(n/2)α (this equality motivated the choice of the

exponent α), our inequality reduces to

−Dn ≥ −3Dn/2 + Cn,

i. e.,
Dn/2 ≥ Cn.

Let us therefore choose D := 2C, and the required inequality is satisfied.
Note that this holds regardless of the value of A. We now set the value of
A sufficiently large such that g(n) > 0 for all n ≥ 1. Exercise. Prove that
such a choice of A is possible. (Use the fact that n = o(nα).)

Therefore B(n) = O(g(n)) = O(Anα − Dn) = O(nα). This concludes
the proof of Theorem 3. Q. E. D.

4


