
CS 221 Programming Languages Handout 1
Fall 2005 Oct 25, 2005

Rule Induction Example

This handout provides a detailed examination of Rule Induction for the particular rule set defining
the small-step dynamic semantics for the simple language Arith+Let (see Section 1). It gives a full
presentation of the Induction Principle for this rule set, and then a detailed (even pedantic) sample
inductive proof based on the Induction Principle.

1 Small-step dynamic semantics for Arith with Let

(p = m + n)
plus(num[m], num[n]) 7→ num[p]

(AD1)
(p = m× n)

times(num[m], num[n]) 7→ num[p]
(AD2)

let(num[n], x.e2) 7→ {num[p]/x}e2
(AD3)

e1 7→ e′
1

plus(e1, e2) 7→ plus(e′
1, e2)

(AD4)
e2 7→ e′

2

plus(num[n], e2) 7→ plus(num[n], e′
2)

(AD5)

e1 7→ e′
1

times(e1, e2) 7→ times(e′
1, e2)

(AD6)
e2 7→ e′

2

times(num[n], e2) 7→ times(num[n], e′
2)

(AD7)

e1 7→ e′
1

let(e1, x.e2) 7→ let(e′
1, x.e2)

(AD8)

1



2 Induction Principle for Dynamic Sematics Rules

The Induction Principle for the transition relation 7→ defined by rules AD1 through AD8 allows us
to prove general statements of the form

IConc : ∀e, e′. e 7→ e′ ⇒ P (e, e′) (1)

where P is some binary property on expressions. For instance, to prove the following proposition
stating that the transition relation is deterministic:

∀e1, e2, e3. e1 7→ e2 & e1 7→ e3 ⇒ e2 = e3 (2)

we could define the property P as follows:

P (e, e′) ⇔ ∀e′′. e 7→ e′′ ⇒ e′′ = e′ (3)

The Induction Principle is the implication

IC1 & IC2 & . . . & IC8 ⇒ IConc (4)

where each ICi is an induction clause for the corresponding inference rule ADi, as described below.

Instruction Rules: The induction clauses for the three instruction rules are simple because they
do not introduce induction hypotheses.

Rule AD1

IC1 : ∀e, e′. if e 7→ e′ by AD1, then P (e, e′) (5)

or equivalently

IC1 : ∀m,n. P (plus(num[m], num[n]), num[m + n]) (6)

Rule AD2

IC2 : ∀e, e′. if e 7→ e′ by AD2, then P (e, e′) (7)

or equivalently

IC2 : ∀m,n. P (times(num[m], num[n]), num[m× n]) (8)

Rule AD3

IC3 : ∀e, e′. if e 7→ e′ by AD2, then P (e, e′) (9)

or equivalently

IC3 : ∀n, e. P (let(num[n], x.e), {num[n]/x}e) (10)

2



Search Rules: The induction clauses for the search rules are more complicated, and involve in-
duction hypotheses (which are underlined here).

Rule AD4

IC4 : ∀e, e′. if e 7→ e′ by AD4, so that for some e1, e2, and e′
1,

e = plus(e1, e2) and e′ = plus(e′
1, e2) and e1 7→ e′

1,

then P (e1, e
′
1) ⇒ P (e, e′) (11)

or equivalently

IC4 : ∀e1, e
′
1, e2. e1 7→ e′

1 & P (e1, e
′
1) ⇒ P (plus(e1, e2), plus(e′

1, e2)) (12)

Rule AD5

IC5 : ∀e, e′. if e 7→ e′ by AD5, so that for some n, e2, and e′
2,

e = plus(num[n], e2) and e′ = plus(num[n], e′
2) and e2 7→ e′

2,

then P (e2, e
′
2) ⇒ P (e, e′) (13)

or equivalently

IC5 : ∀n, e2, e
′
2. e2 7→ e′

2 & P (e2, e
′
2) ⇒ P (plus(num[n], e2), plus(num[n], e′

2)) (14)

Rule AD6 IC6 is similar to IC4 with times substituted for plus.

Rule AD7 IC7 is similar to IC5 with times substituted for plus.

Rule AD8

IC8 : ∀e, e′. if e 7→ e′ by AD8, so that for some x, e1, e2, and e′
1,

e = let(e1, x.e2) and e′ = let(e′
1, x.e2) and e1 7→ e′

1,

then P (e1, e
′
1) ⇒ P (e, e′) (15)

or equivalently

IC8 : ∀x, e1, e
′
1, e2. e1 7→ e′

1 & P (e1, e
′
1) ⇒ P (let(e1, x.e2), let(e′

1, x.e2)) (16)

3 Example Proof

Now let’s use this induction principle for Arith+Let to do a representative proof by Rule Induction
over the rule set AD1 through AD8 defining the small step transition relation 7→.

Proposition: ∀e1, e2, e3. e1 7→ e2 & e1 7→ e3 ⇒ e2 = e3

3



Proof: We recast the statement of the proposition so that it has the form of the conclusion of our
Induction Principle (1), using the property P defined in (3). So our goal is to use the induction
principle to prove

∀e, e′. e 7→ e′ ⇒ (∀e′′. e 7→ e′′ ⇒ e′′ = e′) (17)

The proof proceeds by cases, one case for each rule, or more precisely for each inductive clause
IC1 through IC8. Having proved each inductive clause, we can apply the Inductive Principle (4) to
prove the conclusion.

Case IC1. Assume that e is such that

plus(num[m], num[n]) 7→ e (18)

Only rules AD1 or AD4 or AD5 could possibly derive (19) because only their conclusions match
the form of the source expression plus(num[m], num[n]). But AD4 cannot be used to derive (19)
since num[m] is final, and similarly AD5 cannot be used because num[n] is final.

Thus (19) can only be derived by rule AD1. It follows that e must be num[m + n].

Case IC2. The proof is similar to that of IC1, replacing plus with times and + with ×.

Case IC3. Assume that

let(num[n], x.e2) 7→ e (19)

Only rules AD3 or AD8 could possibly apply because only their conclusions match the form of the
source expression let(num[n], x.e2). But AD8 cannot be used to derive (19) since num[n] is final.

Thus (19) can only be derived by rule AD3. It follows that e must be {numn/x}e2.

Case IC4. Assume that

plus(e1, e2) 7→ plus(e′
1, e2) (20)

by rule AD4, implying that e1 7→ e′
1. We can assume the Induction Hypothesis P (e1, e

′
1), i.e.

∀e′′. e1 7→ e′′ ⇒ e′′ = e′
1 (21)

Now suppose that e′ is such that

plus(e1, e2) 7→ e′ (22)

Then (22) must be derived using either AD1, AD4, or AD5. But AD1 and AD5 are not possible
because e1 is not final (e1 7→ e′

1) and so e1 cannot be of the form num[n]. Hence (22) must
be derived using AD4, implying that there is an expression e′′

1 such that e′ = plus(e′′
1, e2) and

e1 7→ e′′
1 . But then the Induction Hypothesis (21) implies that e′′

1 = e′
1, which in turn implies that

e′ = plus(e′
1, e2).

Case IC5. Assume that

plus(num[n], e2) 7→ plus(num[n], e′
2) (23)

by rule AD5, implying that e2 7→ e′
2. We can assume the Induction Hypothesis P (e2, e

′
2), i.e.

∀e′′. e2 7→ e′′ ⇒ e′′ = e′
2 (24)

4



Now suppose that e′ is such that

plus(num[n], e2) 7→ e′ (25)

Then (25) must be derived using either AD1, AD4, or AD5. But AD1 is not possible because e2

is not final (e2 7→ e′
2) and so is not of the form num[n], and AD4 is not possible because num[n]

is final. Hence (25) must be derived using AD5, implying that there is an expression e′′
2 such that

e′ = plus(num[n], e′′
2) and e2 7→ e′′

2 . But then the Induction Hypothesis (24) implies that e′′
2 = e′

2,
which in turn implies that e′ = plus(num[n], e′

2).

Case IC6. The proof is similar to that of IC4, replacing plus with times and + with ×.

Case IC7. The proof is similar to that of IC5, replacing plus with times and + with ×.

Case IC8. Assume that

let(e1, x.e2) 7→ let(e′
1, x.e2) (26)

by rule AD8, implying that e1 7→ e′
1. We can assume the Induction Hypothesis P (e1, e

′
1), i.e.

∀e′′. e1 7→ e′′ ⇒ e′′ = e′
1 (27)

Now suppose that e′ is such that

let(e1, x.e2) 7→ e′ (28)

Then (28) must be derived using either AD3 or AD8. But AD1 is not possible because e1 is not
final (e1 7→ e′

1) and so is not of the form num[n]. Hence (28) must be derived using AD8, implying
that there is an expression e′′

1 such that e′ = let(e′′
1, x.e2) and e1 7→ e′′

1 . But then the Induction
Hypothesis (27) implies that e′′

1 = e′
1, which in turn implies that e′ = plus(e′

1, e2).

QED

4 A More Informal Proof

Lets now look at a more conventional, semi-formal way of presenting the same proof (roughly
comparable to the style of proof found in Harper’s text and the research literature). In such a
proof, the the Induction Principle is assumed but not made explicit, and sometimes the induction
hypothesis for an inductive case is also not stated explicitly, but instead is refered to by the phrase
“by induction”. We’ll just give a couple representative cases for this proof.

Proof: We proceed by rule induction on the hypothesis e1 7→ e2.

Case: e1 7→ e2 by Rule AD1. Then

e1 = plus(num[m], num[n]) and (29)

e2 = num[m + n] (30)

If e1 7→ e′ for some expression e′, this must be derived using a Rule matching e1. But the only
such rule is AD1, because the fact that num[m] and num[n] are final rules out AD4 and AD5. But if
e1 7→ e′ by rule AD1, it is clear that e′ = num[m + n], and hence e′ = e2.

5



Case: e1 7→ e2 by Rule AD4. Then

e1 = plus(e1,1, e1,2) and (31)

e2 = plus(e′
1,1, e1,2) (32)

where

e1,1 7→ e′
1,1 (33)

Suppose that for some e′,

e1 7→ e′ (34)

Since e1,1 cannot be a number expression because of (33), the only rule that could derive (34) is
AD4, which implies that e′ = plus(e′

1, e1,2) for some e′
1 such that e1,1 7→ e′

1. But by induction,
e′
1,1 is the unique expression such that (33) holds, and therefore we must have e′

1 = e′
1,1, and hence

e′ = e2.

5 Appendix: Static Semantics for Arith with Let

Just for completeness, we include the static semantics for Arith with Let.

The judgement Γ ` e ok expresses the fact that e is well-formed with free variables contained in
the set Γ.

(x ∈ Γ)
Γ ` x ok

(AS1)
(n ≥ 0)

Γ ` num[n] ok
(AS2)

Γ ` e1 ok Γ ` e2 ok

Γ ` plus(e1, e2) ok
(AS3)

Γ ` e1 ok Γ ` e2 ok

Γ ` ×(e1, e2) ok
(AS4)

Γ ` e1 ok Γ ∪ {x} ` e2 ok (x 6∈ Γ)
Γ ` let(e1, x.e2) ok

(AS5)

6


