CMSC35000-1 Introduction to Artificial Intelligence

Lecture 5: Wednesday January 19
Lecturer: Partha Niyogi

Scribe:

Winter 2005

Mike Rainey

0.1 Learning Algorithms

1. sign(w e x)

2. sign(31 , aio(w; e z))
Non-parametric models: > | «; fi(z) where f; € H

Given (zi,9;) ... (%n,yn), find mingem, (3, (vi = f(z;))?) where H,

linear combinations.

3. Kernel Based Methods

Example 0.1 Support Vector Machines, Least Squares Regularizaion

Definition 0.2 A Kernel K is defined as K : (z x ) = R.

=Y, a;fi = o(wexz) are

Definition 0.3 K is (a) symmetric if ¥V, ,K(z,y) = K(y,z) and (b) positive semidefinite if

v;:1,...,.2'n€XI(i,j = K(Z'“ z])

Definition 0.4 A positive semidefinite matriz is a Hermitian matriz all of whose eigenvalues are

nonnegative.

Example 0.5 Ezamples of kernels:

eyl
(a) K@y)=¢ o

Ezercise 0.6 Check that it is positive-semidefinite.
(b) K(z,y) =z"ey

(c) K(z,y) = (zoy)? 3
H = {K(z,e)}where K(z,e) : z - R
H = {K,|z € z}where iaiKm

i=1

0-1

(0.1)
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Y1
Consider y =

Yn

Consider a vector K& with n numbers where i‘h element is f(z;) = > 1, K(zi,ys)-

J(@) = minlly - Kal]?
=min(y - Ka)" (y - Ka)
=yTy—20"KTy+ o"KTKa
is minimized wheng =0.

Example 0.7 —2KTy =2KTKa =0

Definition 0.8 If K is positive definite, K is invertible. So, a = K~ 'y, and Ko = y is interpreted data.

0.2 Another Algorithm

Find « to fit data as closely as possible:

min [jy — Ka/? (0.5)

min [ly — Ka||* + 7[| Kall® (0.6)
where min,, ||y — Ka/||? is the fit to data, and 7||K«||? controls complexity.

By using this method, the error of training data goes to 0. This framework is the most successful today, and
H, =% " ;K (z;,e) is called Reproducing Kernel Hilbert Space (RKHS).

0.3 Decision Trees

The goal is to learn a function f : z — y where y = {—1,1}. We are given a set Q = {questions} of yes / no
questions. Formally, each ¢ € Q is ¢ : x — y. The data are labeled examples denoted as (z;, y;). For buidling
a decision tree, we want a good ¢, one that divides all the data into two classes: y; = +1 and y; = —1.

0.3.1 Purity of the Dataset

Given D = {(z;,y;)i = 1,...,n}, n1 = number of data such that y; = +1, N — ny = number of data such
that Yi = —1.



Definition 0.9 Ifn; =1 or ny =0 we have a pure data set, ny = 1/2 we have an impure data set.

Given a g, D, measure purity:

Dy = {(=4,yi)lq(z:) = +1}
Dy = {(4,yi)lq(z:) = -1}

Corollary 0.10 The following hold: D1 (YD =0 and D1 |JDs = D.

D D
Definition 0.11 Then we have g(D,q) = %I(Dl) + %I(Dz).
where I is the impurity function.
Example 0.12 A possible impurity function:
p(1-p)

Example 0.13 Another possible impurity function, the entropy of p:

1
H(p) =plog]—3+ (1-p)log

I-p
Proposition 0.14 mingcq g(D,q) finds the best question.
Example 0.15 Common decision tree for real-valued data.
z =Rk
(i, y:) wherei =1,....n

Q = {look at a coordinate and threshhold}

Picki€ {l,---,k} and t € R. Then q(z,i,t,+) = +1 & z(i) > t and ¢(=z,i,t,—) = -1 & x(i) > t.

(0.10)

(0.11)

(0.12)

(0.13)

Exercise 0.16 Convince yourself that an impure dataset always has a query that gives a nontrivial split.



