CMSC35000-1 Introduction to Artificial Intelligence

Winter 2005

Lecture 5: Wednesday January 19

Lecturer: Partha Niyogi Scribe: Mike Rainey

0.1 Learning Algorithms

- 1. $sign(w \bullet x)$
- 2. $sign(\sum_{i=0}^{n} \alpha_i \sigma(w_i \bullet x))$ Non-parametric models: $\sum_{i=1}^{n} \alpha_i f_i(x)$ where $f_i \in H$ Given $(x_i, y_i) \dots (x_n, y_n)$, find $\min_{f \in H_n} (\sum_{i=1}^{n} (y_i = f(x_i))^2)$ where $H_n = \sum_{i=1}^{n} \alpha_i f_i = \sigma(w \bullet x)$ are linear combinations.
- 3. Kernel Based Methods

Example 0.1 Support Vector Machines, Least Squares Regularization

Definition 0.2 A Kernel K is defined as $K:(x \times x) \to \mathbb{R}$.

Definition 0.3 K is (a) symmetric if $\forall_{x,y}K(x,y) = K(y,x)$ and (b) positive semidefinite if $\forall_{z_1,\ldots,z_n\in X}K_{i,j} = K(z_i,z_j)$.

Definition 0.4 A positive semidefinite matrix is a Hermitian matrix all of whose eigenvalues are nonnegative.

Example 0.5 Examples of kernels:

(a)
$$K(x,y) = e^{-\frac{\|x-y\|}{\sigma^2}}$$

Exercise 0.6 Check that it is positive-semidefinite.

- (b) $K(x,y) = x^T \bullet y$
- (c) $K(x,y) = (x \bullet y)^d \exists_d$

$$H = \{K(x, \bullet)\} \text{ where } K(x, \bullet) : x \to \mathbb{R}$$

$$\tag{0.1}$$

$$H = \{K_x | x \in x\} \text{ where } \sum_{i=1}^n \alpha_i K_{xi}$$

$$\tag{0.2}$$

$$\min_{f \in H_n} \sum_{i=1}^n (y_i - f(x_i))^2 = \min_{f \in H_n} \sum_{i=1}^n (y_i - \sum_{i=1}^n \alpha_j K(x_j, x_i))^2$$
(0.3)

Consider
$$y = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}$$
.

Consider a vector $K\widehat{\alpha}$ with n numbers where $i^t h$ element is $f(x_i) = \sum_{i=1}^n K(x_i, y_i)$.

$$J(\alpha) = \min_{\alpha} ||y - K\alpha||^{2}$$

$$= \min_{\alpha} (y - K\alpha)^{T} (y - K\alpha)$$

$$= y^{T} y - 2\alpha^{T} K^{T} y + \alpha^{T} K^{T} K\alpha$$

$$(0.4)$$

is minimized when $\frac{\delta}{\delta \alpha} = 0$.

Example 0.7 $-2K^Ty = 2K^TK\alpha = 0$

Definition 0.8 If K is positive definite, K is invertible. So, $\alpha = K^{-1}y$, and $K\alpha = y$ is interpreted data.

0.2 Another Algorithm

Find α to fit data as closely as possible:

$$\min_{\alpha} \|y - K\alpha\|^2 \tag{0.5}$$

$$\min_{\alpha} \|y - K\alpha\|^2 + \gamma \|K\alpha\|^2 \tag{0.6}$$

where $\min_{\alpha} \|y - K\alpha\|^2$ is the fit to data, and $\gamma \|K\alpha\|^2$ controls complexity.

By using this method, the error of training data goes to 0. This framework is the most successful today, and $H_n = \sum_{i=1}^n \alpha_i K(x_i, \bullet)$ is called **Reproducing Kernel Hilbert Space** (RKHS).

0.3 Decision Trees

The goal is to learn a function $f: x \to y$ where $y = \{-1, 1\}$. We are given a set $Q = \{\text{questions}\}$ of yes / no questions. Formally, each $q \in Q$ is $q: x \to y$. The data are labeled examples denoted as (x_i, y_i) . For building a decision tree, we want a good q, one that divides all the data into two classes: $y_i = +1$ and $y_i = -1$.

0.3.1 Purity of the Dataset

Given $D = \{(x_i, y_i) | i = 1, ..., n\}$, $n_1 = \text{number of data such that } y_i = +1, N - n_1 = \text{number of data such that } y_i = -1.$

Definition 0.9 If $n_1 = 1$ or $n_1 = 0$ we have a pure data set, $n_1 = 1/2$ we have an impure data set.

Given a g, D, measure purity:

$$D_1 = \{(x_i, y_i) | q(x_i) = +1\}$$

$$(0.7)$$

$$D_2 = \{(x_i, y_i) | q(x_i) = -1\}$$
(0.8)

Corollary 0.10 The following hold: $D_1 \cap D_2 = \emptyset$ and $D_1 \bigcup D_2 = D$.

 $\textbf{Definition 0.11} \ \ \textit{Then we have} \ \mathbf{g}(\mathbf{D},\mathbf{q}) = \frac{|D_1|}{|D|} I(D_1) + \frac{|D_2|}{|D|} I(D_2).$

where I is the **impurity function**.

Example 0.12 A possible impurity function:

$$p(1-p) \tag{0.9}$$

Example 0.13 Another possible impurity function, the entropy of p:

$$H(p) = p \log \frac{1}{p} + (1 - p) \log \frac{1}{1 - p}$$
(0.10)

Proposition 0.14 $\min_{q \in Q} g(D,q)$ finds the best question.

Example 0.15 Common decision tree for real-valued data.

$$x = \mathbb{R}^k \tag{0.11}$$

$$(x_i, y_i) where i = 1, \dots, n$$

$$(0.12)$$

$$Q = \{look\ at\ a\ coordinate\ and\ threshold\} \tag{0.13}$$

 $Pick \ i \in \{1, \cdots, k\} \ \ and \ t \in \mathbb{R}. \ \ Then \ q(x, i, t, +) = +1 \Leftrightarrow x(i) > t \ \ and \ q(x, i, t, -) = -1 \Leftrightarrow x(i) > t.$

Exercise 0.16 Convince yourself that an impure dataset always has a query that gives a nontrivial split.