CS 35000 — Introduction to AI
The University of Chicago, Winter 2005

Problem Set 1. Due: Tuesday 4/1

(Please attempt all problems by yourself without consultation with classmates or friends. If
any question is unclear, contact me (niyogi@cs) or the TA (matveeva@Qcs).)

1. In class, we covered the Perceptron Learning Algorithm (PLA) for the case when the data
was linearly separable by functions of the sort

y =1if (w.x > 0) otherwise y = —1

where w and x are k dimensional vectors. We showed how to update the “weight vector” w from
mistake to mistake so that ultimately the data was separated. This is equivalent to assuming that
the data was separable by hyperplanes passing through the origin. Suppose, this is not the case,
i.e., the data is linearly separable but by hyperplanes of the sort

y=1if (w.x+b > 0) otherwise y = —1

where b is a scalar offset. Show how to modify the PLA to update both the weight vector w and
the offset b from mistake to mistake so that one arrives at values for the weight vector and the
offset that will separate the data.

2. Linear hyperplanes such as those provided by the Perceptron Learning Algorithm are useful
only when the data is linearly separable. Consider the following four labeled data points in two-
dimensions, i.e., each labeled datapoint is an (x,y) pair where y € {—1,1} and x € R%. The four
data points are as follows: (we denote by z; and z2 the two “coordinates” of the data point x and
by y the label of the data)

Ty T2 |y

2 2 | +1
0 0 |+1
2 0 |-1
0 2 |-1

By plotting the data on a plane, it is clear that the data are not linearly separable. Consider
the possibility of mapping the data into a new space Z where the mapped data points are linearly
separable. Can you come up with two functions (with two real valued variables as input and one
real valued variable as output) f; and fy such that (i) each data point ((z1,z2),y) is mapped
onto ((f1(z1,z2), fo(x1,22)),y) (ii) the mapped data points can now be separated by the classical
hyperplanes (with no offset term) that we discussed in class.

3. Linear hyperplanes (with no offset) are required to satisfy the following property to com-
pletely separate the labeled data. If the data point x has label ¥y = +1 then w.x > 0. If the label
is y = —1 then w.x < 0. Show that this means that for a separating hyperplane, the product of y;



and w.x; is always positive for each datapoint (x;, ;). Using this intuition, one might try to design
hyperplanes by making this product as positive as possible. Consider the following problem:

n
max Y yi(W.x;)
i=1

Find a solution to this problem subject to the constraint that |w| = 1. (Hint: Recall that
|z| = (2F_, 27)!/2 where z is a k-dimensional vector and z; are the components of that vector. You
will need to use the result that for any two vectors a and b the value of a that maximizes the
product a.b subject to the constraint that |a| =1 is simply agy = %.)

4. Let the conditional densities for a two-category one-dimensional problem be given by the
Cauchy distribution

N 1 .
plzly =1) 7)ii=0,1

N 7rb(1 + (%5™)
If P(y = 0) = P(y = 1), show that P(y = 0|z) = P(y = 1|z) if z = (ao + a1). Sketch P(y = 0|z)
for the case ap = 3, a1 = 5 and b = 1. How does P(y = 0|z) behave (i) as z — —oo? (ii) as
x — +oo?

5. A multiclass (as opposed to two class) problem is one in which the data can belong to one
of m classes where m > 2. Indicate by P(z|y = ) the conditional probability of z given the ith
class where 7 can take on values in {1,...,m}. Indicate by P(y = ) the prior probability of the
ith class. A decision rule must map each data point X into one of m values. Therefore (analogous
to the two class problem) it must map each z € X into {1,...,m}. What is the optimal decision
rule for this case?

6. The perceptron algorithm as discussed in class works for two class problems where the data
is separable. Suppose we have four classes. How would you design a collection of perceptrons to
solve such a four class problem?

7. In class, we considered deterministic decision rules given by functions (¢ : X — {0,1})
where for each point z € X, the rule made a deterministic guess about the (unknown) label y. We
derived the optimal decision rule for this case. Consider now the class of all randomized decision
rules given by «(z) : X — [0,1]. Thus, for each point z, the randomized rule o guesses the label
to be y = 1 with probability a(z) € [0,1] and y = 0 with probabability 1 — a(z) (i.e., for each z,
a(z) is a number between 0 and 1 characterizing the probability of guessing). Show that the best
randomized decision rule will not have a lower probability of error than the best deterministic rule.
Therefore, randomization does not buy us any additional power.

8. Let the components of the vector x = (z1,%2,...,74)! (d odd) be binary valued (1 or 0).
Further, let

pij = Problz; =1y =jl;i=1,...,d;j = 1,2
with the components z; being statistically independent for each y = j. (This means simply that
Prob[z; = m,xy = n|y = j] = Problz; = m|y = j|Problzy = nly = j] for m,n € {0,1}). Consider
the special case when

1
pit=p > 5
and
pz=1-p
Let the prior probabilities P(y = 1) = P(y = 0) = 3.

(a) Show that the minimum error decision rule becomes

Decide y = 1 if Y0 2; > 4.



(b) Show that the minimum probability of error is given by

(d-1)/2
P(d,p)= Y CipFla—p) P
k=0

where C,‘Cj is the number of ways of choosing k distinct objects from d distinct objects. (= (d—dik!)!d!)'
(c) What is the limiting value of P.(d,p) as p — %?
9(x; Optional). In class, we obtained an upper bound on the number of updates the perceptron
learning algorithm can make if the data is linearly separable. This was seen to be in terms of the

margin

0 =max min |w.z
woi=1,..k
Suppose all the z;’s were on the sphere or radius R in n dimensions, can you provide upper or
lower bounds on § as a function of R,n, k.



