
CMSC 23000
Autumn 2006

Operating Systems Project 2
October 18

RCX kernel
Due: Monday, November 6 at 10pm

1 Introduction

This project builds on the previous project by adding support for multiple threads of control and
preemptive scheduling. As part of this project, you will need to implement an interrupt handler for
timer interrupts, low-level synchronization primitives, support for cooperatively scheduled threads,
and support for preemptively-scheduled tasks.

Make sure that you have committed your final version by 10pm on Monday, November 6. Using
Doxygen, generate the documentation for your code. Make sure that it includes both your group
name and group member names! The project documentation is due in class on Tuesday, November
7.

2 Threads

The first part of Project 2 is to implement cooperative scheduled threads. The API for this mecha-
nism is defined in thread.h. Each thread has its own copy of the machine registers (r0-r7, ccr,
and pc) and stack. Since memory on the RCX is limited, thread stacks should be 256 bytes. You
will need to design a thread control block (TCB) data structure for holding the state of suspended
threads.

Threads are created using the function thread_spawn, which takes a function pointer and
a data pointer as arguments. The new thread will evaluate the function applied to the data. It
terminates when the function returns or when thread_exit is called (or when the host task
terminates).

Threads are cooperatively scheduled in a round-robin order. The functions thread_spawn,
thread_exit, and thread_yield all result in a thread context switches. In addition, the
function task_join blocks the calling thread, which also results in a context switch.

3 Tasks

Your RCX kernel will also support preemptive scheduling of tasks. A task consists of one or more
threads. At any time, a task has a current thread. If the thread does a blocking operation (i.e., waits
on a lock), then the whole task blocks. If all the threads in a task terminate, then the task terminates.
The API for this mechanism is defined in task.h.



Table 1: 16-bit timer registers

Address Name Size Description
0xff90 TIER 8 Timer interrupt enable register. This register is

used to control which timer interrupts are enabled.
0xff91 TCSR 8 Timer control/status register.
0xff92 FCR 16 Free-running counter register. This register holds

the current timer value.
0xff94 OCRA/B 16 Output compare register A/B. These two registers

are mapped to the same address (access is con-
trolled by the OCRS bit in the TOCR). Their val-
ues are tested against the FCR register at every
timer tick; when they match an interrupt will be
signaled (if it is enabled).

0xff96 TCR 8 Timer control register.
0xff97 TOCR 8 Timer output-compare control register.
0xff98 ICRA 16 Input capture register A (unused)
0xff9a ICRB 16 Input capture register B (unused)
0xff9c ICRC 16 Input capture register C (unused)
0xff9e ICRD 16 Input capture register D (unused)

Tasks are created using the task_create, which takes a function pointer and a data pointer as
arguments and creates a new task with an initial thread that evaluates the function applied to the data.
A task terminates when either all of its threads terminate or one of its threads calls task_exit.

3.1 The 16-bit timer

You will need to use timer interrupts to drive preemptive scheduling. The RCX includes a builtin
16-bit timer, which you can use for this purpose. The workings of the timer are controlled by a
collection of device registers that are mapped to memory addresses 0xff90–0xff9f. Table ??
gives a complete list of these device registers and their addresses. This timer has a 16-bit counter
register (FRC) and two 16-bit match registers (OCRA and OCRB). It can generate three different
interrupts:

1. An OCIA interrupt is generated when the FCR register matches the OCRA.

2. An OCIB interrupt is generated when the FCR register matches the OCRB.

3. An FOVI interrupt when the FCR register overflows (i.e., its value changes from 0xffff to
0x0000).

These interrupts can be individually enabled and disabled by setting the appropriate bits in the TIER
device register. An interface to the timer device is given in kernel/include/rcx.h.

In addition to triggering interrupts, the above conditions also cause bits in the TCSR register to
be set. These bits cannot be set by software, but they can be cleared by first reading them and then
setting them to 0. The TCSR also has a control bit (called CCLRA) that, when set, causes the FCR

2



to be cleared upon a match with the OCRA. The rcx.h header file defines symbolic constants for
testing these bits.

The FCR register is incremented at various different frequencies depending on the values of the
bits 0 and 1 of the TCR register as follows:

Bit 1 Bit 0 Frequency
0 0 1

2 internal clock (8MHz)
0 1 1

8 internal clock (2MHz)
1 0 1

32 internal clock (500KHz)
1 1 Timer is disabled

3.2 Interrupt handlers

As part of initialization, your kernel will need to initialize the RCX’s RAM interrupt vector. For
most interrupts, you should use the default handler at ROM address 0x046a, but for the timer you
will need to install your own handler(s). The rcx.h header provides definitions for accessing the
vector.

4 Synchronization

With the introduction of preemptive scheduling, you must implement synchronization primitives.
At the lowest level, you can use the interrupt mask bit of the CCR to disable interrupts (and thus
preemptive context switches) for short periods of time. On top of this mechansism, you should build
mutex locks and condition variables. The API for this mechanism is defined in mutex.h. You will
need to modify the mutex.h file to include your representations of locks and condition variables.
When a task terminates, any locks that it holds should be released.

Note that the memory management library you wrote for Project 1 is now a shared resource.
Thus, the heap data structures must be protected from simultaneous access.

5 Inline assembly code

Implementing certain features of this project will require a small amount of assembly code (e.g.,
saving and restoring machine registers). You may either write this code as a separate assembly-code
file (use the .s suffix) or you may use inline assembly directives. For example, the interrupt-mask
bit of the CCR can be set using the following statement:1

__asm__ ("orc #0x80:8,ccr");

More information about inline assembly can be found at http://gcc.gnu.org/onlinedocs/
gcc-3.4.5/gcc/C-Extensions.html. Information about the H8/300 instruction set is
available from the course web page (and in Handout 3).

1Note: we provide this mechanism in the rcx.h header file.

3



6 Grading

Your project will be graded on both correctness (70%) and programming style (30%). The docu-
mentation is evaluated as part of the style component of your grade. Failure to document your code
will result in no credit for the style portion of your grade.

4


