
CMSC 23000
Autumn 2006

Operating Systems Project 3
November 13

RCX kernel
Due: Friday, December 1 at 10pm

1 Introduction

In this final part of the kernel project, you will add higher-level communication features, user-level
timer support, and some basic I/O.

Make sure that you have committed your final version by 10pm on Friday, December 1. Using
Doxygen, generate the documentation for your code. Make sure that it includes both your group
name and group member names!

2 Channels

The main addition of this project are unbuffered channels for inter-thread communication. Unlike
mutexes and condition variables, channels may be used to communicate between threads of the
same task as well as between threads of different tasks. You will have to implement the following
channel API:

typedef struct { ... } chan_t;

void chan_init (chan_t *ch);
void chan_send (chan_t *ch, void *msg);
void *chan_recv (chan_t *ch);

Channel communication is unbuffered, which means that both the chan_send and chan_recv
operations are blocking. Unlike the mutex and condition variable operations, however, channel
operations do not block the entire task, just the calling thread. Thus, they may be used for both
interthread and intertask communication.

2.1 Choice

For extra credit, you may also implement the following choice operation

void *chan_select (int *n, chan_t *ch[]);

which blocks the calling thread until there is a message available on one of an array of channels at
which point it returns the message. The argument n is used to specify the number of channels in ch
and will be set to the index of the channel that provided the message.

3 User-level timing

Two user-level timer services should be provided by your kernel. The first is

long timer_clock ();

which returns the time since boot-up in milliseconds. Note that this is a 32-bit value. The second is

void timer_sleep (int ms);

which causes the calling thread to sleep for the given number of milliseconds.

4 RCX Buttons

The RCX has four buttons, which are labeled On/Off, Run, Prgm, and View. Each of these buttons
is connected to a bit in the RCX’s input ports. In addition, the On/Off button can signal an IRQ0
exception when pressed (if the interrupt is enabled) and, likewise, the Run button can signal an
IRQ1 when pressed.

4.1 User interface

Your kernel should provide a channel-based interface to these buttons:

extern chan_t EventCh;

enum {
BUT_ON_OFF, BUT_RUN, BUT_PRGM, BUT_VIEW

};

where the constants BUT_ON_OFF, BUT_RUN, BUT_PRGM and BUT_VIEW are used to represent
the pressing of the different buttons.

5 Ticker output

We added a simple text output device to the RCX simulator called the ticker. This device can display
32 ASCII characters, which are addressed from left to right (character 0 is the leftmost and character
31 is the rightmost). It is controlled by a set of four 8-bit registers.

TCR The ticker control register is a write-only register used to send commands to the ticker. The
commands are:

CLEAR, which clears the display.

STORE, which causes the character in the TDR to be stored into the position specified by the
TAR

SHIFT, which causes the characters to shift to the left one position. The rightmost position
is loaded with the character in the TDR.

TSR The ticker status register is a read-only register that signals the ticker’s state. The ready bit
signifies that the ticker is ready for a new command, while the busy bit signifies that it is

2

busy. The busy bit is set when the ticker starts processing a command and is cleared when the
command is completed and the status register is read (i.e., the bit is sticky).

TAR The ticker address register holds the address of the character to update in its low five bits.

TDR The ticker data register holds the character to be displayed on the ticker.

The protocol for controlling the ticker is:

1. Wait until the ready bit in the TSR is set.

2. Write the data and address values into the TDR and TAR (if necessary).

3. Write the command into the TCR.

4. Wait until the busy bit is signaled in the TSR.

5.1 User interface

Your kernel should provide the following function for writing data to the ticker:

void print (const char *msg);

Characters are added to the ticker by scrolling them in from the right at 10ms intervals. This routing
should be atomic; i.e., the output of multiple threads should not be commingled.

6 Kernel architecture

To implement these new features, you should first implement the channel abstraction. Then, using
this abstraction, you should implement server threads (and tasks) for timers, buttons, and the ticker.
You can use a request/reply protocol to implement user-level operations. For example, the user-level
timer_sleep function might be implemented as follows:

extern chan_t *TimerReqCh;

typedef struct {
int ms;
chan_t * wakeup;

} timer_req_t;

void timer_sleep (int ms)
{

chan_t wakeup;
timer_req_t req;

chan_init (&wakeup);
req.ms = ms;
req.wakeup = &wakeup;
chan_send (TimerReqCh, &req);
chan_recv (& wakeup);

}

In this code, the a request is sent to the timer server, which includes a unique channel for getting a
wakeup message.

3

7 Grading

Your project will be graded on both correctness (70%) and programming style (30%). The docu-
mentation is evaluated as part of the style component of your grade. Failure to document your code
will result in no credit for the style portion of your grade.

4

