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Hot Languages

* higher-order
- binding code and data
- typed
- static type checking (for error detection)

- specifying structure of data and program
interfaces

- formalism for analyzing language constructs

» functional and object-oriented (OO)
paradigms
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Functional Paradigm

» value-oriented programming -- computing by
constructing

- functions as data (closures)
* parameterization at value, type, and module level

+ "algebraic" data types for unions, records for
products

* pure vs impure functional languages
- Haskell pure, lazy
- ML impure (imperative), strict
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OO Paradigm

- state-oriented, imperative programming

- objects as data (instance state + method
code)

» subtyping (based on subclassing)
+ subclasses for unions, objects for products

* pure vs impure object oriented languages
- Smalltalk and Java pure (everything an object)
- Eiffel, Modula3, C++, Object Pascal, etc. impure
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Theme: Static typing good

Static typing, based on a sound type
system (“well-typed programs do not go
wrong") is a basic requirement for robust
system programming.
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Why Types?

+ safety: well typed programs do not go wrong

» a language and disciple for design of data
structures and program interfaces

- support for separate development via precise
interfaces

» properties and invariants verified by the
compiler ("a priori guarantee of correctness")

+ support for orderly evolution of software

- consequences of changes can be traced
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Types and FP

* In FP, types determine behavior to a much
greater extent than in conventional
procedural or OO languages.

* OO languages use "modeling languages” like
UML. For FP, the type system serves as
the modeling language.

* In FP, the extent of program behavior
covered by type checking (in Greg Nelson's
terminology) is greater than for imperative
programming.
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A type-based approach

Evaluating language designs on the based of
their type systems

+ type systems provide a common framework
for comparison (synthesis?) of designs

* type systems are a major factor
determining the flexibility and
expressiveness of language designs

- type systems have been thoroughly studied
and provide a connection between language
.Theorists and language designers and users,




Theme: Program adaptation

To support code reuse, we must be able to
build general purpose program units and
then adapt them to particular uses.

How do we build generic units, and how do
we specialize them, or derive specialized
versions?

26/7/00 Marktoberdorf
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Overview

* Introduction: parameterization, subtyping,
inheritance

* Review of Type Systems
* Functional Programming (ML)

- functions, polymorphism, modules
+ Object-Oriented programming
- reconstruction from first principles

» Comparison of OO and FP
» Synthesis of OO and FP

26/7/00 Marktoberdorf 11




Adaptation Mechanisms

* parameterization
- values: procedures and functions
- types: parametric polymorphism

» subtype polymorphism

- dynamic dispatch

- implementation inheritance: extension and
update of functionality

- information hiding, abstraction, modularity

26/7/00 Marktoberdorf
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Procedural abstraction

* Most basic form of reuse
* Name a block of code, call it repeatedly

* Preserves env. of definition (closure)
procedure P() =

begin
X = x+1;
Yy = y*x;
end

var x: int; ... P(); ... P();

26/7/00 Marktoberdorf
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data parameters: 1st order functions

- abstract over names of values

- specialize by application to different
arguments

26/7/00 Marktoberdorf
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data parameters: sorting lists

fun sort(l: int list) =
(i1f null 1 ... x <y ...)
—-— code to sort 1

sort : int list -> int list

sort [2, 17, -3, 5] => [-3, 2, 5, 17]

this can sort different lists of ints, but only
with respect to fixed, hardwired ordering <
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function parameters: higher-order fns

- abstract over names of functions

» specialize by passing functions

fun sort (< : int*int->bool) (1: int list) =
(1f null 1 ... x <y ...)

sort : (int*int->bool) -> int list
-> int list

sort (>) [2, 17, -3, 5]
=> [-3, 2, 5, 17]
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Type parameters: polymorphic functions

+ abstract over names of types
- specialize by passing a type argument

26/7/00 Marktoberdorf
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Polymorphic sort

fun sort [t] (<: t*t->bool) (1: t list) =
(i1f null 1 ... x <y ...)

sort : Vt. (t*t->bool) -> t list -> t list

sort[int] (>in¢) [2, 17, -3, 5]
=> [17, 5, 2, -3]

sort[string](<String)[“bobn, “alice”, “tom”]
=> [“alice”, “bob”, “tom”]
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Type parameters: polymorphic sort

Note that if the element type is a
parameter, the comparison function < must
also be a parameter.

fun sort [t] (<: t*t->bool) (1: t list) =
(1f null 1 ... x <y ...)

sort : Vt. (t*t->bool) -> t list -> t list
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Interface parameters

Interface specifies a set of components (types
and values), defining the type of a module.

Abstract a module over an interface.

signature Order =
sig type t

val < : £t * £t -> bool
end

functor Sort(X: Order) =
struct

fun sort(l: X.t list) = ...
end

26/7/00 Marktoberdorf
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Subtype polymorphism

* The subtype relation

A <: B ‘everyAisaB"

Nat <: Int, Ascii <: Unicode

+ Subsumption Rule

A <: B x: A
x: B

26/7/00 Marktoberdorf

21




Picturing subtyping: A <: B

subset

embedding

&

26/7/00 Marktoberdorf
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Sources of subtyping

Mathematics: Nat <: Int

Machines: UnsignedInt32 <: Int32 °?

Mathematics: Int <: Real

Machines: Int32 <: Float64
(representation shift)
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Sources of subtyping: records

point = {x:

colorpoint

colorpoint

point

X

26/7/00

y

int, y: int}
= {x: int, y:
<: point
colorpoint
X
Y
C

Marktoberdorf

int, c¢: color}
colorpoint’
c
X
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Using Subtyping

move : Point -> Point
ColorPoint <: Point
cp : ColorPoint

cp : Point

move cp : Point

26/7/00 Marktoberdorf

25




Implementation Inheritance

* A principle adaptation mechanism of OO
languages
- class-based: subclasses

- object-based: cloning + extension + method
update

* Based on "open recursion”

replacing members of a family of mutually
recursive functions
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Tnheritance

A class and a derived subclass

class Counter(n: Int)
var xXx: Int = n
method get() = x

method add(y: Int) = x = x + y

class BCounter (max: int) inherits Counter

method add(y: Int) = (* override ¥*)
if get()+y < max then x := get() + y
method inc() = (* extend *)

if get() < max-1 then x = get() + 1
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Open recursion

- conventional closed recursion
\\/ g
h
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Open recursion

open recursion: replacing members of a
recursive family of functions
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Open recursion with function passing

fun f(x) = g(-) g(-)
fun g(x) = g(-) (-)
fun F(£,9)(-) = ... £(-)...g(-)...
fun G(f,g9)(-) = ...g(-)...£(-)...
fun G’ (£,9)(-) = ...g(-) ...
Old family New family

f = F(£f,q) £’ = F(f',9’)

g = G(f,9) g’ =G (£',9)

Requires recursive types.

26/7/00 Marktoberdorf
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Open recursion with function refs

fr = ref (dummy) ; gr = ref (dummy)
fun £(x) = ... !'gr(-) ... 'gr(-)
fun g(x) = ... !'gr(-) ... V'fr(-)
fun g’ (x) = ... !gr(-)
Old family

fr := £; gr = g;

1fr (-)

New family

gr = g';

' fr (-)

26/7/00 Marktoberdorf
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General support for adaptation

» abstraction and information hiding support
adaptation by reducing dependencies
between program components

- e.g. the implementation of an abstract type can
be modified without disturbing clients
- explicit, enforced interfaces support
change by allowing the consequences of a
change to be easily tracked through a large
system
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IT. Type systems

* What is a type?

- a set of values
int={..-2,-1,0,1,2,..}

- a specification of the form or structure of

values

- a device for controlling how we can act on

values of the type

26/7/00 Marktoberdorf
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Language of types

- Types are expressed by terms in a type
abstract syntax:

A ::=int | A*B | A -> B |

E.g. 1int, int * int, int -> int,
int -> (int -> int)

- add constructs to increase power and
expressiveness
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Types and Terms

+ Types are related to an underlying language
for expressing and manipulating values

e ::=x | fun(x)e | e e’ (implicit)

e ::= x | fun(x:A)e | e e’ (explicit)
through typing judgements:
e : A “e has type A"
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Typing environments

*+ How do we know the type of a free variable?

X: °?

- Answer: typing environments

C ::=J | C; x: A
(finite mapping from variables to
types)

. Contexts are added to typing judgements to
deal with free vars
Cl-Fe : A

E.g. x: int; y: bool | x: int
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Typing Rules

- deduction rules for typing judgements

C |l e: A ->B C |-Fe : A
(-> Elim)

C|I-Fee” : B

C, x: A - e : B

(-> Intro)
C | fun(x:A)e : A -> B
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Typing rules: atomic expressions

Integer constants

n an integer
C |F n : Int ( 9)

Variables

(Var)
C; x: A |- x: A

26/7/00 Marktoberdorf
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Typing derivations

» proof of a valid typing judgement
- laid out as a tree of rule instances

Derivationof : ¢ | +(x,3): int, where

C=+4+ : int * i1nt -> int; x: int
C |- x:int C |- 3:int
C |- +: int*int -> int C IF (x,3) : int*int

C |- +(x,3) : int
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Well-typing

e is well-typed wrt context C if there is a
type A such that

C | e : A
is a valid judgement.

1+3 - well typed wrt context C

l+true - ill typed (true: bool)
there is no type A with valid judgement
C I l+true : A
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Type Inference

+ Type inference (for a term e) is the
process of discovering a type A and a
derivation of

ClFe : A

26/7/00 Marktoberdorf
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Multiple typings

+ There may be more than one type A such
that C - e : A

+ E.g. typing (untyped) identity function

x: Int |- x : Int

|- fun(x)x : Int -> Int

x: Bool | x : Bool

< |- fun(x)x : Bool -> Bool

Xx: A |- x : A

& |- fun(x)x : A -> A
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References for Type Systems

+ Cardelli: "Type Systems” tutorial
in library, Cardelli's web page
+ B. Pierce: "Type Systems”

forthcoming comprehensive book with
software

toolkit

26/7/00 Marktoberdorf
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Typing and program behavior

- Denotational semantics
- [*]: expressions — values
- [*] : types — sets of values

» Soundness:
J - e: A = [e] € [a]
-+ Type errors
[e] = wrong if e contains a type error
e.g. [1+true] = wrong

wrong & [A] for any type A

26/7/00 Marktoberdorf
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Typing and program behavior

» Operational semantics

e > e’ single step reduction

e %

e’ multiple step reduction

» Subject reduction

e —F

e’ and Y |- e: A = J |- e': A
» Corollary: well-typed expressions don't get
stuck.

1 + true is a stuck expression
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Some basic type constructs

products:

records:

sums:

functions:
recursion:

refs:

subtypes:

26/7/00

A * B

{mq:4q,.

A + B
A -> B
ut.A
Ref A
A <: B

Marktoberdorf
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Products

A *B={(a,b)|] a € A, b & B}
C |- e : A C |- e : B
(* Intro)
C |- (e1, e2): A * B
C |- e: A * B
(* Elim left)
C |- £fst e : A
C |- e: A * B
(* Elim right)

C |- snde : B

26/7/00
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Products

p = (1,true) : Int * Bool
fst p : Int ==>1

snd p : Bool ==> true

J -1 : Int O |- true : Bool

D |- (1, true): Int * Bool
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Products

Projections as primitive operations
for each pair of types A and B:

fSt(A,B) : A * B -> A

snd(A,B) : A * B -> B

pairing as a primitive?
(°r°)(A,B) : A ->B ->A *B (?)
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Records

record = labeled product
= finite map from labels to values
r = {age = 13, name = “Bob”}

record type = finite map from labels to types

r : {age : Int, name : String}

field = labeled component of a record

r.age : Int ==> 13 (field selection)
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Typing records

Obvious generalization of product rules:

C|l-ei: A; (i=1,...,n)

C |- {mj=eq1,...,mp=en} : {mp:Aq1,... mp:Apn}

(Record Intro)

Cl-e : {my:A1,...,mp:Ap}

(Record Elim)
C |- e.mj: Aj
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sums

A + B - tagged union of A and B
inl: A -> A + B inr: B -> A + B
outl: A + B -> A outr: A + B -> B

isl: A + B -> Bool isr: A + B -> Bool

Actually, should be: inl (a g) , etc.
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sums

i =inl 3 : Int * Bool

b = i1inr true : Int * Bool

isl b
outl a

26/7/00

Bool ==> false
Int ==> 1

Marktoberdorf

(inl (Int,Bool))

53




sums

Could replace isl, isr, outl, outr with case
case (p ,B,C) (A+B) * (A->C) * (B->C) -> C
case (a B,C) (x,f£,9) =

i1f i1isl x then f (outl x)
else g(outr x)

case (a,
fun(n) (n+l1) ,
fun(b) (1f b then 3 else 4)) ==> 2

26/7/00 Marktoberdorf 54




Recursive types

ut.A

Equirecursive types:

[or Rec(t)A, Fix(Fun(t)A)]

ut.A = [ut.A/t]A
C |- e: ut.A C |- e: [ut.A/t]A
C |- e: [ut.A/t]A C |- e: ut.A

26/7/00
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Isorecursive types

ut.A <= [ut.A/t]A

C |- e:ut.A ,
(Rec Elim)

C |- unfold e: [ut.A/t]A

C |- e: [ut.A/t]A

(Rec Intro)
C |- fold e: ut.A
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Recursive type example: integer lists

List = ut. (Unit + Int * t)

nil = fold(inl())
List

cons = fun(i:int,x:1ist)fold(inr(i,x))
Int * List -> List

hd = fun(x:1list)
i1f isr (unfold x)
then fst(outr (unfold x))
else erroryjist

List -> Int

26/7/00 Marktoberdorf
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Ref

Ref A -- mutable cells containing A values

refa : A -> Ref A
'a : Ref A -> A (deref)

:=p : Ref A * A -> Unit

Example of a storage type; also arrays and
mutable records

26/7/00 Marktoberdorf
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26/7/00

ref 3 Ref Int

Int ==> 3
4 : Unit ==> ()

Int ==> 4

Marktoberdorf

(
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Unit )
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The subtype relation

e AK: B
— A isasubset of B: [A] C [B], or

- There is a canonical injection of [A] into [B]
(coercion semantics)

* <: is reflexive, transitive and antisymmetric*

26/7/00 Marktoberdorf
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Subsumption

the typing rule reflecting the interpretation
of subtypes as subsets:

C |- e: A C |- AK<: B

Sub ti
C |- e B (Subsumption)

How is C relevant to A <: B?
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Propagation of subtyping

* Products (monotonic)

A1 <: A9 Bq1 <: B9

A1 * B1 <: Ay * Bo

+ Sums (monotonic)
A1 <: A9 Bq1 <: B9

A1 + B1 <: Ay + B»o

26/7/00 Marktoberdorf
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Propogation of subtyping

» function types

Whenis A7 -> B1 <: Ay -> By ?

26/7/00 Marktoberdorf
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Function subtyping

() 6

Ay <: Aq B1 <: B9

Assume Ao <: A1 and Bj <: Bjo.
Assume £ € A1 -> B1 and x € Aj.
Then x € A1 = £ x € B = £ x € Bo.
Hence £ & Ao -> Bo.
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Subtyping function types

function types
- contravariant (antimonotonic) in the domain
- covariant (monotonic) in the range.

Ay <: A1 B1 <: Bo

A1 -> B1 <: Agp -> By

26/7/00 Marktoberdorf
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Subtyping records

Depth subtyping (like products)

A; <: By (i=1,...,n)

{mq:A1,...,mp:Ap} <: {m1:Bq,..

Nat <: Int

{age: Nat, b: Bool} <:
{age: Int, b: Bool}

26/7/00 Marktoberdorf
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Subtyping records 2

Width subtyping -- adding fields makes a
subtype.

{mq:A1,..., M4k :Bn+k} <: {m1:Aq1,...,mup:Ap}

{age: Int, name: String, Id: Int} <:
{age: Int, name: String}

Intuition: If all you can do to a record is select
fields, extra fields don't get in the way.

26/7/00 Marktoberdorf 67




Subtyping Records

Depth and width subtyping can be combinded.

{age: Nat, name: String, Id: Int} <:
{age: Int, name: String}
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Subtyping Refs

Ref types are invariant!

Thm: Ref A <: Ref B =A =B
[B<:A] let r : Ref A and b : B

r : Ref B (assumption)
r :=Db
b=I1r : A

[A<:B] let r : Ref A and a : A
r : Ref B (assumption)
r := a
a=1!'r : B

26/7/00 Marktoberdorf
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Subtyping and recursion 1

- The "Amber"” rule:

26/7/00

C, s<: t |- AK<: B

C |- us.A <: ut.B

Marktoberdorf
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Subtyping and recursion 2

Example:

Nat <: Int |-
ut.{a: Nat, b: Unit -> t,
ut.{a: Int, b: Unit -> t}

1.

N

3.

26/7/00

s <: t =

Unit -> s <: Unit -> t =

{a: Nat, b: Unit -> s,
{a: Int, b: Unit -> t}

Marktoberdorf
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c: Bool} <:

Bool} <:
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Subtyping and recursion 3

Exercise:
NatList

ut. (Unit + Nat * t)

IntList = ut. (Unit + Int * t)

1. Show that NatList <: IntList, assuming
Nat <: Int.

List = Fun(s)ut. (Unit + s * t)

2. Show that List is monotonic:

List s <: List t 1f s <: t.
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Subtyping and recursion 4

fold and unfold rules (equirecursion)
us.F(s) = F(us.F(s)) implies
us.F(s) <: F(us.F(s)) (fold)

F(us.F(s)) <: us.F(s) (unfold)
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Parametric Polymorphism

Parameterize expressions over types

- Add type variables and quantified types to the
type language
A ::= ... | t | All(t)A (Cardelli style)

A :: | £t | Vt.A (Classical)

- Add lambda-abstraction over types and type
application to the expression language

e ::= ... | Fun(t)e | e[t]
e ::= ... | At.e | e[t]
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Parametric Polymorphism: Examples

Examples
Polymorphic identity function

Id = Fun(t)fun(x:t)x : All(t)t->t
Id = At.Ax:t.x : Vt.t->t
Id[Int] : Int -> Int; Id[Int]3 : Int

Self-application combinator (1st class polymorphism)

fun(x:All(t)t->t) (x[All(t)t->t])x
(All(t)t->t) -> (All(t)t->t)
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Parametric Polymorphism: Rules

Typing rules

26/7/00

C, t : Type |- e : A

C |- Fun(t)e : All(t)A

C |- e : All(t)A

C |- e[B] : [B/t]A

Marktoberdorf

(All Intro)

(All Elim)
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Parametric Polymorphism: Semantics

» The meaning of a polymorphic type can be:
- the intersection of all its instances, or
- a parametric family of types

- parametricity: a polymorphic function
Fun (t) e works the same regardless of
how t is instantiated (i.e. computations
don't depend on the identity of the type t).

- Cor: fun(x)x is the unique (computable)
member of the type (A1l t) (t -> t).
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Polymorphic primitive operations

Primitive operations associated with type

constructions can be polymorphic
fst: All(s)All(t) s * t -> s

inl: All(s)All(t) s -> s + t
if then else: All(s) Bool * s * s -> s
ref: All(s) (s -> Ref s)

:= : All(s) (Ref s * s -> Unit)

but not fold, unfold, r.m |

26/7/00 Marktoberdorf
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Type functions

Type functions are defined by abstracting
over type terms

A ::= ... | Fun(t)A | A(B)
Pair = Fun(t) (t*t)

List = Fun(s)ut. (Unit + s * t)

null = Fun(s) fun(x:List s)
1sl[Unit] [s*List(s)]
(unfold x)
: All(s) (List s -> Bool)
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Typing type functions: kinds

Types now need to be well-typed!

Types of type terms are called kinds.
K ::= Type | Type -> Type

Int : Type

List : Type -> Type
List(Int) : Type

* : Type -> Type -> Type

In C |- e: A, A must be of kind Type.
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Type system problems

* What can go wrong when designhing a type
system for a language?

26/7/00

type system is unsound (i.e. inconsistent with the
evaluation semantics)

type system is undecidable (i.e. can't find a terminating
algorithm for discovering typings)

type system is incomplete (can't find typings for
“sensible” expressions)

typings are not canonical (i.e. ferms have multiple typings,
nhone of which is "best")

type system is oo complex or difficult to use to be
practical (e.g. not enough inference)
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ITI. Functional Programming
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Essence of Functional Programming

- functions as first-class values

- higher-order functions: functions that operate
on, or create, other functions

- functions as components of data structures
- value-oriented programming
- lego vs the abacus

- compute by building and traversing values

- values are shareable
* parameterization is a core concept

» algebraic types and pattern matching
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Functional programming history

» lambda calculus (Church, 1932)
- simply typed lambda calculus (Church, 1940)

* lambda calculus as prog. lang. (McCarthy(?),
1960, Landin 1965)

» polymorphic types (Girard, Reynolds, early
70s)

* algebraic types (Burstall & Landin, 1969)

* type inference (Hindley, 1969, Milner, mid
70s)

sobazy evaluation (Wadsworth, early 70s) =




Varieties of Functional Programming

- typed (ML, Haskell) vs untyped (scheme,
Erlang)

* Pure vs Impure
- impure have state and imperative features

- pure have no side effects, "referential
transparency”

» Strict vs Lazy evaluation

* Hindley-Milner vs System F typing
- H-M: implicit typing with type inference

- System F: explicit type abstraction and appl.

26/7/00 Marktoberdorf
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A brief introduction to (Core) ML

» strict evaluation
* impure

- refs, arrays, imperative I/0, exceptions
» Hindley-Milner type inference

- algebraic types with pattern matching
- sums and recursive types via datatypes
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ML 2

expressions
1l: int 1.0: real

true: bool “Bob”: string

(1,2): int * bool
{a = true, b = “x”}: {a: int, b: string}

if %<3 then 0 else x+1 : int

(fn x => x+1) : int -> int
square 3 : int

(print “hello”; 4): int
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ML 3

- declarations
3 (* x: int ¥*)

val x

val inc = (fn x => x+1) (* inc: int->int *)
fun inc x = x+1

type point = {x: int, y: int} (* type *)
type 'a pair = 'a * 'a (* type function ¥*)

let val p : int pair = (2,3) (* a block *)
fun inc x = x+1
in inc (#1 p)
end : int
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Algebraic datatypes

datatype tree = Node of int * tree * tree

| Leaf of int

val t = Node(3,Leaf 2,Leaf 1)
val t : tree

fun depth(Leaf n) =1
| depth (Node(n,left,right)) =
l+max (depth (left) ,depth(right)
val depth : tree -> int

depth t : int ==> 2
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Algebraic datatypes: list

datatype 'a list = nil
| :: of "a * "a list

val a = 2::3::nil (* or [2,3] *)
val a : int 1list

fun length nil = 0

| length (x::xs) =1 + length xs
val length : ’a list -> int
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Type inference in ML (Hindley-Milner)

val id = (fn x => Xx)

¥ y=0o—p
\ o=p

I
SN
X X

(fn x => x) : oa—oq, foranya

id : 'a -> 'a (id : Vt.t->t)
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Type inference

Application expressions

a=p—y
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The let rule

» Polymorphism is introduced by let

declarations
C|l-e : A C, x: VX.A |- e’ : B

C |- let val x = e in e’ end : B

where X is the set of type variables free in A but
hotinC: X = FV(A) - FV(C).

Constraint: all polymorphic types are prenex.
(so cannot type (fn x => x x))
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Polymorphic instantiation

* polymorphic types are implicitly
instantiated
C |- x: Vt.A

C |- x : [B/t]A

choose B cannonically by solving equational
constraints during type inference
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Principal typing

Given a term e and context C, if e has a
typing wrt C, then there is a most general

typing

C |-e : A

such that any typing of e in C is an instance:

C|I-me : Al =

A’ is a substitution instance of a.
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Type inference algorithm

Find the most general typing by:

1. solving for the most general unifier of the
equational constraints from typing diagrams.

2. quantifying (¥) any remaining type

variables.
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Primary sources of polymorphism

* generic functions
fnx=>x:"a ->"a

fn (x,y) =>x : "a * 'b -> ’a
* parametric datatype constructors

nil : '"a list
a * "Ta list -> 'a list
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Polymorphism and refs

let val r = ref (fn x => x)
in r := not;

'r (3) r : Vt. ((t->t) ref)
end *\:i:::? r : (bool->bool) ref
r : (int->int) ref

Oops! The type system is unsound!
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The value restriction

We fix the type system by restricting the
let rule. In

e in ... end

let val x

we only generalize the type of x fo a
polymorphic type if e is a value expression.

A value expression is a constant, variable, or
function expression*. Value expressions
represent final values, not computations.
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System F (F" )

» polymorphism with explicit type
abstraction and type application

» polymorphism with variables of higher
kinds (e.g. abstraction over type operators)

* nested, nonprenex polymorphic types

- no value restriction needed for refs
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Map in ML and System F

datatype 'a list = nil | :: of "a * "a list
fun map £ nil = nil
| map £ (x::xs) = £ x :: map £ xs

val map : (’a -> ’b) -> ’a list -> ’b list

List = Fun(s)ut. (Unit + s * t) (+null, hd,...

map = Fun(s)Fun(t) fun(f:s->t) fun(xs:List s)
i1f null[s]xs then nil[t] else
cons|[t] (£(hd[s]xs))
(map[s] [t]f(tl[s]xs))
: All(s)All(t) (s—>t) -> List s -> List t
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Polymorphism and adaptation

* Polymorphic types defined an infinite
family of instances, and (with H-M) the
appropriate instance for any context is
chosen automatically.

+ The code for a polymorphic function is
shared by all instances (parametricity).

26/7/00 Marktoberdorf 102




Polymorphism and refs in System F

(Vt. (t->t)) ref

let r = ref[All (t) (E->t)] (Fun(t) fun(x:t) x)
in :=[Bool->Bool] (r, not);

('[AL1ll(t) (t->t) ] ) [IntR(3)
end

type error!
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Polymorphism and refs in System F

All (t) ((t->t) ref)

V

let r = Fun(t)ref[t->t] (fun (x:t) x)
in r[Bool] := not;
(' [Int->Int] (x[Int]) (3)

end

r[Bool]: Ref (Bool->Bool) and
r[Int]: Ref(Int->Int)

are two different ref values!
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Generalizing polymorphism

Example: polymorphic sort

sort = Fun(t)fun(less: t*t->bool).

In this case, we need to parameterize over a
type and an associated comparison function in
a coordinated manner.
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Generalizing polymorphism

Can we package the type and associated
operation together and pass them as one
parameter?

sort = Fun(<t,less: t*t->bool>).

What are these hybrid parameter packages?

Modules!
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Basic Modules in ML

* A module is a package of (related)
declarations (called a structure).

struct
declq
declp

end

The component declarations can define
types, values (e.g. data, functions, exceptions)
and nested modules.
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Structure declarations

Structures can be named in structure
declarations.

structure A = struct ... end

The components of the named structure can

be accessed using the dot notation:
A.t --atype
A.f --a function

A.B --asubstructure (nested module)
A.B.x --avalueinA.B

26/7/00 Marktoberdorf 109




Example: A stack structure

structure Stack
struct

type 'a stack = "a list

exception Empty
val empty : "a stack =
fun push(x,s) = x::s

fun pop nil = raise Empty

pop( ::xs) = xs

fun top nil = raise Empty

top(x:: ) = x

end
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Example: using the Stack structure

val sO0 : int Stack.stack = Stack.empty

val sl = Stack.push(l,Stack.push(2,s0))

val s2 Stack.pop sl

val x = Stack.top s2 handle Empty => 0
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Signatures (interfaces)

- A signature is a type for a structure.

- It defines the exported interface.

- Each exported component has a type
specification.

- A signature is implemented by any structure
that matches it.
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The STACK signature

signature STACK =
sig
type 'a stack
exception Empty
val empty : "a stack
val push : 'a * "a stack -> 'a stack
val pop : 'a stack -> 'a stack
val top : "a stack -> 'a
end
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Sighature constraints

We can (and usually do) specify a signature
when declaring a structure.

structure Stack : STACK =

struct ... end

Then we say that Stack is an instance of
signature STACK.
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Signature/Structure Independence

» Signatures and structures can be defined
independently and later matched.

* Any signature can be matched by multiple
structures (i.e. have multiple
implementations)

* Any structure can match multiple
signatures (i.e. can implement different
interfaces, or be viewed through different
intferfaces)
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Signature matching: thining

+ Components of a structure can be hidden.
-+ Component types can be specialized.
- Sighature matching is coercive.

structure A : sig type t
val £ : int -> t

end =
struct
type t = int
val a = 3 (* not exported by A *)
fun £f x =a (¥ £: "a -> t ¥*)

end
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Signatures and record types

There is an analogy between sighature
matching and width subtyping for records.

Say SIG1l <: SIG2 if for any structure s,
S:SIG1l implies S:SIG2 (i.e. any structure
that matches s1G1 will also match S1G2) .
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Width subtyping of signatures

As for records, we can ighore extraneous
elements.

sig sig
type t type t
type s <: val a: t
val a: t end
val b: s*t

end
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Depth subtyping of signatures

There is a simple analog of depth subtyping.

sig
val £f: "a -> int
end

<:
sig
val £: int -> int
end

because (’a -> int) <: (int -> int)
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Transparent signature matching

exported types are not abstract (by default)

structure Stack : STACK =
struct

type 'a stack = "a list
end

(* Stack.stack == list *)

null (Stack.empty) : bool ==> true
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Opaque sighature matching

Can specify opaque matching, making
exported types opaque.

structure Stack :> STACK =
struct

type 'a stack = 'a list
end

(* Stack.stack =/= list *)

null (Stack.empty) (* type error *)
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Sorting again

signature ORD = sig
type elem
val less : elem * elem -> bool

end
structure IntOrd : ORD = struct
type elem = int

val less = (< : int * int -> bool)
end

Note that Intord :> ORD would not be useful!
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SORT signature

signature SORT =
sig
structure Ord : ORD
val sort : Ord.elem list -> Ord.elem list

end
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A Sort structure

structure InsertSort : SORT =

struct
structure Ord : ORD = IntOrd
fun insert(x,nil) = x::nil

| insert(x,y::ys) =
if Ord.less(x,y) then x::y::ys
else y::insert(x,ys)
fun sort nil = nil
| sort (x::xs) = insert(x,sort xs)
end

Fine, but it only sorts int lists.

26/7/00 Marktoberdorf 124




Import by mention

» A structure definition imports other
structures by mentioning them (i.e. having
their names appear free in the body).

+ E.g. IntOrd is imported by InsertSort.
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A Generic Sort

functor InsertSortF (X: ORD) : SORT =
struct
structure Ord : ORD = X
fun insert(x,nil) = x::nil
| insert(x,y::ys) =
if Ord.less(x,y) then x::y::ys
else y::insert(x,ys)
fun sort nil = nil
| sort (x::xs) = insert(x,sort xs)
end

Replace Intord with a parameter structure
variable X.
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Instantiation of generic sort

A functor is a structure parameterized over a
structure name. It can be instantiated by
applying the functor to a structure.

structure IntInsertSort : SORT =
InsertSortF (IntOrd)

structure StringInsertSort : SORT =
InsertSortF (StringOrd)

IntInsertSort.sort [4,7,1,3];
StringInsertSort.sort [“bob”, “alice”];
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Multiple implementations of sort

Other sorting methods can be provided by
other functors that can be applied to IntOrd,
StringOrd.

structure IntBubbleSort : SORT =
BubbleSortF (IntOrd)

structure StringBubbleSort : SORT =
BubbleSortF (StringOrd)

IntBubbleSort.sort [4,7,1,3];
StringBubbleSort.sort [“bob”, “alice”];
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Higher-order Functors

One can imagine abstracting a larger module
with respect to the generic sort functor
(InsertSortF, BubbleSortF, etc.).

funsig GENSORT (X: ORD) = SORT where Ord = X

functor Prog(SortF: GENSORT) = struct
structure IntSort = SortF (IntOrd)
structure StringSort = SortF (StringOrd)

end
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Fully Functorized Style

Suppose we have the following dependency
graph

structure A =

A struct ... end
B / structure B =
struct ... A ... end
\ 4
C

structure C =
struct ... A ... B
end
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Fully Functorized Style

Build the graph through functors, importing via

parameters.
functor MkA() = struct ... end
functor MkB(A:SIGA) = struct ... A ...
functor MkC(A:SIGA,B:SIGB) =
struct . A ... B ...end
structure A = MkA()
structure B = MkB (B)
structure C = MkC (A, B)
(* or *)
structure C = MkC(A,MkB(A))
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Translation of functors in F®

functor F(X:sig type t val f: t*t->t end)
sig type u val g: X.t*u->u end =
struct
type u = t list
fun g(x:t,y:u) =
map (fn z => f(z,x)) y
end
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Translation of functors in F®

F is translated into a pair <Fy, Fy> consisting of
a type function and a value function.

Fr : Type -> Type = Fun(t:Type) (List t)

Fy @ All (t:Type) {£:t*t->t} ->
{g:t*F (t) >F¢ ()}
= Fun(t:Type) fun({f=£f}:{£f:t*t->t})
{g=(fun(x:t,y:Fg(t))
(map[t] [Fe(t)] (fun(z:t) £f(z,x)) y}
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Things left out

- transparent and opaque signature matching
» sharing constraints and definitional specs

* higher-order functors
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Exercise:

» Construct a similar example of a higher-
order functor (e.g. a functor that would
take F as a parameter) and give its F®
translation.

» Consider the problem of writing a functor
signature that faithfully captures the type
function part of your higher-order functor.
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Essence of Object-Oriented Programming

- encapsulation of state
» "dynamic dispatch”
- Type does not statically determine code run by
a method invocation

- Standard situation in a higher-order language
with interface types

» subtyping (or some approximation)
+ implementation sharing and modification

- class-based: inheritance

- object-based: cloning with extension and
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Degrees of OO purity

* OO as additional features for managing
state and allocation on top of a
conventional procedural language.

- E.g.: Simula, C++, Object Pascal, Modula 3, ...

* OO (typically class-based) as the principle
means of structuring programs

* pure or pervasive OO
- everything is an object
- classes as only program structuring method
- E.g.: Smalltalk, Java (sort of)
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Objects

What is an object?
- state (in the form of instance variables)

* methods (functions acting on the state)

How does this differ from records of

function closures?
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Object creation

» class-based languages

- classes

+ object based
- direct creation

- cloning from a prototype object

- with extension, method update
- implemented via embedding or delegation
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The magic of objects

capacity for incremental change of
functionality
* in the objects themselves (method update)

- as part of object cloning

» in the object generating mechanism
(subclassing)
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Classes

What is a class?

a template used to generate objects
generated objects are “instances” of the class

- specifies data representation (instance
variables)

+ specifies implementation of methods
+ specifies how objects are initialized
- specifies inheritance from superclass(es)
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Deconstructing objects and classes

Goal:
To explain away the magic of OO.

Approach:

Try to code objects and classes in a richly
typed functional programming language:

FO® + <: + Rec + Ref + with + ...
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Existential Types

A ::= ... Some (t) A
e = pack t = A with e
open e as (t,x) in e’

C; t=A |- e : B

C |- pack £t = A with e : Some(t)B

C |- e : Some(t)A C;, t:Type; x:A |- e’': B

C |- open e as (t,x) in e’ : B
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Type models for OO languages

Recursive record (Cardelli, Cook, Mitchell)

Rec(t)I(t)

Existential type (Pierce, Turner)
Some (t)I(t)

Recursive-Existential types (Bruce)
Rec(t)Some(u) (u * (u -> I(t)))

Recursive-Bounded-Existential (Abadi, Cardelli, Vis.)
Rec(t)Some (u<:t) (u * (u -> I(t)))
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1. object as record of functions

Cell object is modeled as a record of
variables and functions:

{x = ref O,
get = fun() 'x,
set = fun(y:Int) (x:=y)}
{x: Ref Int, get: Unit->Int,

set: Int->Unit}

Bogus: x is free in bodies of get, set.
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Cell: private variable x

We could make the variable x private:

let x = ref 0 in
{get = fun|() 'x,
set = fun(y:Int) (x:=y)}

{get: Unit->Int, set: Int->Unit}

But this would make it impossible to extend
the record with new functions that have
access 1o x.
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2. Adding self-reference

give a name for the object to refer to itself
(making it a recursive record)

self

ref O,
fun () !'self.x,
fun(y:Int) (self.x:=y)}

{x =
et
et

n Q

self Fix (fun (self)
{x = ref O,
get = fun()!'self.x,

set fun (y:Int) (self.x:=y)})
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3. Naming the generator function

Give a name to the fixpoint generating
function (essentially a class!)

CI = {x: Ref Int, get: Unit->Int,
set: Int->Unit}

Cell = fun(self: CI)
{x = ref O,
get = fun() !'self.x,
set = fun(y:Int) (self.x:=y)}
: CI -> CI

c = new Cell = Fix(Cell) = uself.Cell (self)
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4. \ariable initialization

add initialization of the x variable

Cell = fun(n: Int)fun(self: CI)
{x = ref n,
get = fun() !'self.x,
set = fun(y:Int) (self.x:=y)}
: Int -> CI -> CI

c = new (Cell 3)

Easy so far -- using value recursion to
directly build the object.
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5. Inheritance: adding a method

Inheritance: easy case of adding a method

CI2 = CI + {inc: Unit -> Unit}

Cell2 : Int -> CI2 -> CI2 =
fun(n: Int)fun(self: CI2)
Cell (n) (self) with
{inc = fun() (self.x := !self.x+1)}

Note: Cell (n)self is well-typed because
CI2 <: CI.
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6. Record concatenation

We are using record concatenation to add
the inc method.

{a: Int, b: Bool} + {b: Real, c¢: String}
= {a: Int, b: Real, c: String}

{a=3, b=true} with {b=1.7, c=“cat”}
= {a=3, b=1.7, c=%“cat”}

Usual rule for map concatenation.

26/7/00 Marktoberdorf 152




Record concatenation problem

Oopsl!
e1: {a: Int}
ep: {a: Bool, b: Int}

e1 with ep: {a: Bool, b: Int}

but {a: Bool, b: Int} <: {b: Int}
implies e>: {b: Int}, so we also have

e1: {a: Int}
er: {b: Int}

e1 with eo: {a: Int, b: Int}
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Record concatenation and subtyping

This example shows that with record
concatenation and record subtyping, we can
derive two incompatible typings of e; with

eo .

The reason? with is an operation on
records where extra fields make a
difference.
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Exercise

Suggest a fix that will allow record
concatenation and width record subtypine to

coeXist.
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8. Recursive interface type

We need to add recursive interface types.

Cell = fun(n: Int)fun(self: CI)
{x = ref O,
get fun () 'self.x,
set fun(y:Int) (self.x:=y),
me = fun()self}
Int -> CI -> CI

where

CI = {x: Ref Int, get: Unit->Int,
set: Int -> Unit,
me: Unit -> CI}
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Recursive Interface Type

CI = ut.{x: Ref Int, get: Unit -> Int,
set: Int -> Unit,
me: Unit -> t}
= Fix (CIF)
where

CIF = Fun(t) {x: Ref Int,
get: Unit -> Int,
set: Int -> Unit,
me: Unit -> t}
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9. Inheritance with recursive interface

Add inc method to cell with me method.

Cell2 : Int -> CI2 -> CI2 =
fun(n: Int)fun(self: CI2)
Cell (n) (self) with
{inc = fun|() (self.x = !
self.x+1)}
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Extending recursive interface

There are two ways to extend the recursive
interface type CI: outside the recursion, or
inside.

CI2 = CI + {inc: Unit -> Unit}
= {x: Ref Int, get: -, set: -,
me: Unit -> CI, inc: Unit -> Unit}
CI2'= ut. (CIF(t) + {inc: Unit -> Unit})

{x: Ref Int, get: -, set: -,
me: Unit -> CI2’, inc: Unit -> Unit}
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Extending recursive interface

CI2 <: CI
because of record (width) subtyping

CI2’ <: CI

because of the recursion rule (CI2’ appears

in a positive, covariant position)
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10. Method not specialized

Oops! In c12, the type of the me method

wash't specialized.
Cell(n) : CI -> CI

=> Cell(n)self : CI (self: CI2 <: CI)
=> body of Cell2 : CI + {inc: Unit -> Unit}
=> Cell2: CI2 -> CI2

=> me method: Unit -> CI (not CI2)
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Class Functions, Class Interface

Class A :
A = fun(<init>) fun(self: AI)
<record expression>
InitTyA -> AI -> AI
AIF = Fun(t)<record type>
AI = Fix (AIF)

a = Fix(A xq)
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Inheritance by deriving class function

Class B inherits from A :

B = fun(<init>) fun(self: BI)
A(<init’>(self)
with <record expression>
InitTyB -> BI -> BI

BIF = Fun(t) (AIF(t) + <record type>)
BI = Fix (BIF)

b = Fix(B x1)
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11. Method specialization

To get

Cell2: CI2’' -> CI2’

with the type of me specialized to return’ cI2’,
we need to generalize the type of cell (so it
doesn't return CI).

We make cell polymorphic, but with a new twist:
bounded polymorphism.
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Method specialization

Cell = Fun(t<:CI)fun(n:Int) fun(self:t)
{x: ref n, get = ...,
me = fun|()self}

Cell: All (t<:CI)Int -> t -> CIF(t)

We need t<:CI so that self.x type checks.

c : CI = new (Cell[CI] 3)

Cell[CI] : Int -> CI -> CIF(CI)
= Int -> CI -> CI
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Bounded quantification

Fun (t<:A) and All(t<:3)

are bounded type abstraction and
quantification where the type variable 1 is
constrained to range over subtypes of A.

This guarantees that t has certain
properties, e.qg. is a record type with certain
fields (assuming that a subtype of a record is
a record ...).

26/7/00 Marktoberdorf 166




Method specialization

Cell2 = Fun(t<:CI2’)fun(n:Int)fun(self:t)
Cell[t] (n) (self) with
{inc = fun() (self.x := !self.x+1)}

Cell2: All (t<:CI2’)Int -> t -> CIF2(t)

where
CIF2 = Fun(t) (CIF(t)+{inc: Unit -> Unit})
CI2’ = Fix (CIF2)

Note that CI2’<:CI, so t<:CI2’ => t <: CI.
c: CI2’ = new (Cell2[CI2’'] 3)
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13. Binary methods

Start over, but with Cell having a binary method eq.

CIF = Fun(t) {x: Ref Int, get: -, set: -,
eq: t -> Bool}

CI = Fix (CIF)

Cell = fun(n: Int)fun(self: CI)
{x ref n, get = -, set = -,
eq = fun(y:CI) (!self.x = 'y.x)}

Cell: Int -> CI -> CI
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14. Inheritance with Binary Methods

Add a boolean field and override eq to check
bool field.

CI2 = CI + {b: Ref Bool, eq: CI2 -> bool}

Cell2 = fun(n: Int)fun(Self: CI2)
Cell (n) (self) with
{b = ref true,
eq = fun(c:CI2) (!'self.x = 'c.x
and !self.b = !c.b)}

Oops! CI2 </: CI because of the contravariant
change in eq's type. Type error!
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Inheritance with binary methods

How about

CI2’ = ut.(CIF(t) + {b: Ref Bool}) ?

Again CI2’ </: CI because of the
contravariant occurrence of t. Again
Cell (n) (self) won't type check.

Bounded quantifier trick won't help here because
CI2’ </: CI.
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F-bounded polymorphism

Cell = Fun(t<:CIF(t))fun(n:Int) fun(self:t)
{x = ref n, get = -, set = -,
eq = fun(c:t) (!'self.x = lc.x)}
Cell: All (t<:CIF(t)) (Int -> t -> CIF(t))

CIF2 = Fun(t). (CIF(t)+{b: Ref Bool})

Cell2 = Fun(t<:CIF2(t))fun(n:Int) fun(self:t)
Cell[t] (n) (self) with
{b = ref true,
eq = fun(c:t) (!'self.x = lc.x
and !'self.b = 'c.b)}
Cell2: All (t<:CIF2(t))Int -> t -> CIF2(t)
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Inheritance without subtyping

Cell[t] (n) (self) type checks because

t <: CIF2(t) = CIF(t) + {b: Ref Bool}
=> t <: CIF(t)

c2 : CI2 = new (Cell2[CI2] 3)
where CI2 = Rec(CIF2)

CI2 = Fix(CIF2) </: Fix(CIF) = CI
so inheritance does not imply subtypes, but

CI2 <: CIF(CI2)
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Object protocols

Constraints like
t <: F(t) (1)

are called object protocols. An object type
satisfying such a protocol is recursive and
provides the interface specified by F (wrt to
itself).

A t satisfying (1) is not necessarily a subtype of
ut.F(t), so (1) is a weaker constraint than

t <: ut.F(t) (2)
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16. Class recursion

Suppose we want a method that returns a
new object of the same kind.

Cell = Fun(t<:CIF(t))fun(n:Int)fun(self:t)
{x = -, get = -, set = -,
double =
fun () new (Cell[CI] (2*'!'self.x))}
CIF = Fun(t) {x: Ref Int,...,double: Unit->t}

CI = Fix (CIF)
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Class recursion

Cell is called recursively, so we create a
functional to take the fixpoint of:

CELL = Fun(t<:CIF(t))
fun (myclass: Int -> t ->t)
fun(n: Int)
fun(self: t){x = ...,
double =
fun () new (myclass (2*!'self.x)) }

CELL: All (t<:CIF(t)) (Int -> t -> t)->
(Int -> t -> CIF(t))

Cell = Fix (CELL[CI])

c = new(Cell 3)
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Inheritance with Class Recursion

Add a new boolean field to Cell.
CIF2 = Fun(t) (CIF(t) + {b: Bool})

CELL2 = Fun(t<:CIF2(t))
fun (myclass: Int*Bool -> t -> t)
fun(n:Int,b:Bool)
fun (self:t)
(CELL[t]
(fun(x:Int) (myclass(x,self.b)))
(n) (self))
+ {b = b}
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Observations

The recursive record coding becomes convoluted.

» Three levels of recursion:
- in the construction of objects
- in the construction of object types
- in the construction of classes

» Bounded polymorphism for covariant
method specialization

* F-bounded polymorphism for contravariant
method specialization
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Observations

» Contravariance causes complications

- Inheritance and subtyping are uncoupled:
Subclass interface is not a subtype of the
superclass interface.

- The F-bounded relation ("matching”) replaces
subtyping.

26/7/00 Marktoberdorf 178




Technical Problems

- Recursive definitions of mixed records of
fields and methods

- more refined models separate fields and
methods

+ Coexistence of record (width) subtyping
and record concatenation
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Features Explained

- objects

- object (interface) types

- classes

° hew

- inheritance

- covariant method specialization

- contravariant method specialization (binary
methods)

- MyType (the type variable in polymorphic class
functions)
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Features Not Explained

- super

- private, protected members
- object cloning

- multiple constructors

- class (static) members

- nested (static) classes

- inner classes

- anonymous classes

- multiple inheritance
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OO issues

- implementation inheritance and open recursion
- interface types vs implementation (class) types
- inheritance vs subtyping

- method specialization

- contravariance: binary method problem

- invariance of mutable variables

- access control features and scope dependent
types

- methodologincal problems of OO
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Method recursion

* methods can call one another, hence are
mutually recursive

* recursion of methods is typically indirect,
via a self variable, to facilitate open
recursion
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Open Recursion

* Methods are mutually recursive =
incremental change may involve open
recursion.

- Some methods change, while others remain
the same. But since they are mutually
recursive, the behavior of any or all
methods may change.

- Extension with new methods does not
involve open recursion, because old
methods will not call the new ones.
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Open Recursion Example

Ol = {x = fun()1, vy
= = fun()1l, y

fun () (2*self.x())}
fun()2 }

Ol.x() ==>1 Ol.y() ==> 2
02.x() ==>1 02.y() ==> 2

Ol + {x
02 + {x

fun ()2}
fun ()2}

Ol .x() ==> 2 Ol’ .y() ==> 4
02" .x() ==> 2 02’ .y() ==> 2
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Classes as types

» in most class-based languages, a class is a
type, and subclasses are subtypes

+ object has a class type if it is an instance
of that class or one of its subclasses

+ class types determine an interface: a set
of publicly accessible attributes and their
Types

» class types have a family of associated
implementations: the class and all its
subclasses
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Classes as types (cont.)

+ An object may have a class type without
sharing any of the implementation of that
class. Being a member of a class type does
not guarantee any consistency of behavior.

+ Class types usually support some form of
dynamic typecase.

- checked casts

- classOf operations to query the class of an
object
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Interface types vs Class Types

1. Can't dynamically ask if an object
has an interface type

2. Consequently, can't do checked type
casts to an interface type

3. Interface types do not determine an
implementation

4. In binary methods the two objects may
have different implementations.
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Classes and abstract types

» OO folklore: class = abstract type

- abstract types determine:
- a fixed, hidden data representation
- a fixed interface of operations
- a fixed implementation that guarantees
invariants and other desired properties
» belonging to a class (as type) does not
guarantee consistent implementation,
because of method override

» only "final" classes are "abstract”
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Classes vs modules

+ "static” (or “class") variables and methods
and (in Java) static embedded classes allow
classes to act as a limited form of module

* lack independently defined module
interfaces

+ the class mechanism is overloaded to
perform the role of modules. The function
of modules is better performed by simpler,
special purpose constructs (see Moby and
Loom designs)
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Method specialization

* Method specialization with covariant
occurrences of the object type is easy

- C++ allows this, Java requires invariant method
Types

* Method specialization with contravariant
occurrences of the object type (binary
methods) is possible,

- but subtyping is weakened to "matching” an
object protocol
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Partially abstract object types

Subtype specs like
t <: CI

or object protocol specs like

t <: CIF(t)

can be used to partially reveal the interface of
objects or limit access to object attributes

26/7/00 Marktoberdorf 192




26/7/00

VI. Comparing FP and OO
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Factoring behavior

- FP
- fully specify the data (all variants)
- incrementally add functions over the data

- adding new variants to data requires
rewriting functions

- 00
- incrementally specify the data variants by
adding subclasses

- adding new functions requires adding new
methods to all subclasses
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FP: modifying behavior

FP relies almost entirely on parameterization
- have to anticipate what factors will change and
abstract over appropriate names

- can't change parameterization of existing code
without rewriting the code

- get maximal flexibility by parameterizing over
everything, but this is usually inconvenient
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OO: modifying behavior

inheritance with method override

- effectively same as modifying the class source

- claim that this accommodates “unanticipated”
changes

- code change requires thorough understanding of
old code to determine what behavior changes,
what behavior is preserved
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"Binary" functions

- 00

- hard to implement symmetric functions
(binary methods)

- hard to dispatch over multiple arguments

.+ FP

- easy to define symmetric functions and
dispatch over multiple arguments
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Types in FP

- all types are interface types except
abstract types

+ abstract types carry a fixed interface
implementation
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Types in OO

- interface types
- allow multiple implementations

- implementations may match any interface type, or

- implementations must declare what interface types
they match

- implementation types (class types)

- final classes fix the implementation, can be
considered a kind of abstract type

- other classes allow a family of
implementations represented by their
subclasses (multiple implementations related
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Marktoberdorf

200




Why?

» clear utility of subtyping (OO)

» clear utility of parametric polymorphism
- state encapsulation ?

- implementation inheritance ?

» popularity of OO
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Merging FP and OO

* Pizza (Wadler & Oderski)

- added encodings of functions, datatypes, and
parametric polymorphism to Java

+ 6J - Generic Java (Wadler, Oderski, ...)

- add parametric polymorphism and F-bounded
polymorphism to Java

26/7/00 Marktoberdorf 202




Encoding objects in ML

Tofte and Thorup showed how the existential
type model could be coded in Standard ML,

using explicit coercions in place of subtyping.

The encoding machinery is heavy, but some
simple type system extensions and syntactic
sugar could might make this encoding
useable.
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OCaml (Objective Caml)

- adds objects, object types, classes to Caml
dialect of ML

- based on Pierce-Turner existential model

+ uses "row" polymorphism in place of record

subtyping:
Vp.{a: int, b: bool, p} -> int

- explicit coercion rather than subsumption

- classes not first class, limited interaction
with modules
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Moby (Fisher and Reppy)

+ subtypes, nested parametric polymorphism

- object types and classes, based on Fisher's
“protocol” model

» object view and class view
* uses modules for visibility control
* many Java features
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F< rec

» provides

subtyping

parametric polymorphism at all kinds
nested polymorphism

bounded polymorphism (but not F-bounded)
records

existential types, bounded existential types
can express most OO encodings

* problems
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Extended ML

Simple extensions of the ML type system can
improve ability to emulate OO techniques

- encapsulated existential and universal
types

- extensible datatypes (incrementally add
data constructors)

* row-polymorphism for record types or
limited record subtyping
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Final Thoughts
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FP vs OO

* FP has simpler, lighter-weight structures

- functions vs objects
- records, datatypes vs objects
- polymorphism, modules vs subtyping, inheritance

* Both OO and FP can encapsulate state

* Subtyping would be a valuable addition to FP,
but type inference must be dealt with

* Inheritance is probably not worth adding to
FP.
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Language Complexity budget

* Adding a full-featured object/class system
to a language like ML will roughly double
the complexity of the type system.

+ The OO features are relevant only to the
impure 5-10% of typical ML programs.

- This appears to be a bad bargain.
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Language design criticism

Should the study of language designs be
like botany or horticulture?
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Type Theory

Type theory is an excellent tool for
language design and the analysis of
language designs.

26/7/00

Marktoberdorf

212




URLs

Standard ML and Standard ML of New Jersey
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http://www.smlnj.org
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