
CMSC 22610
Winter 2007

Implementation
of

Computer Languages

Project 4
February 22

MinML bytecode generation
Due: March 11 at 10pm

1 Introduction

The final part of the project is to implement a code generator for MinML. The target for this code
generator is a stack-based interpreter, which is described below. Your implementation will consist
of two phases: the first phase will translate the AST into a simplified representation of the AST in
which variable locations will be determined. The second phase will translate the simplified AST to
bytecode instructions.

2 Data representations

All MinML values are represented by a single machine word. In many cases, this word is a pointer
to heap-allocated storage, but it might also be an immediate value. We refer to values that are
represented as pointers as boxed values, while values that are represented as immediate integers
are unboxed. As we explain below, the values of a datatype may be both boxed and unboxed, in
which case we describe the type as having a mixed representation. Since type variables can be
instantiated to any type, they have a mixed representation. The unit and int types map directly
onto immediate integers (() is represented as 0) and strings are represented as pointers. Function
types are also represented as pointers and are described below in Section 4. Datatype representations
are the interesting case. Let t be a datatype with n nullary constructors (C1, . . . , Cn) and k data-
constructor functions F1 of τ1, . . . , Fk of τk. Then the following table gives the representation
of the various constructors based on the number of constructors and the representations of the τ ’s.

n k Ci Fj(v) t’s representation
> 0 0 i n.a. unboxed
0 1 n.a. v τ1’s representation

> 0 1 i v if τj is boxed. mixed
> 0 1 i 〈v〉 if τj is unboxed or mixed. mixed
≥ 0 > 1 i 〈j, v〉 mixed



In this chart, i means the immediate value i and 〈 · · · 〉 means heap-allocated tuple. Applying this
algorithm to the the builtin datatypes we get:

false → 0
true → 1
nil → 0
a::b → 〈a, b〉

3 The MinML virtual machine

In this section, we describe the MinML virtual machine (VM). The virtual machine is a stand-alone
program that takes an executable file and runs it. An VM executable consists of a code sequence, a
literal table that contains string literals, and a C function table that contains runtime system functions
used to implement services such as I/O.

3.1 Values

The VM supports three types of values: 31-bit tagged integers, 32-bit pointers to heap-allocated
records of values, and 32-bit pointers to strings. A integer value n is represented by 2n + 1 in the
VM (this tagging is required for the garbage collector). The VM takes care of tagging/untagging,
so the only impact of this representation on your code generator is that integer literals must be in
the range −230 to 230 − 1. We use word address for values (but byte addressing for instructions).

3.2 Registers

The MinML VM has four special registers: the stack pointer (SP), which points to the current top of
the stack; the frame pointer (FP), which points to the base of the current stack frame and is used to
access local variables; the environment pointer (EP), which points to the current closure object and
is used to access global variables; and the program counter (PC), which points to the next instruction
to execute.

3.3 Instructions

We define the semantics of the instructions using the following notation

· · · α instr =⇒ · · · β

which means that the instruction instr takes a stack configuration with α on the top and maps it
to a stack with β on the top. The instructions are organized by kind in the following description.

Arithmetic instructions

· · · i1 i2 add =⇒ · · · (i1 + i2)
pops the top two integers, adds them and pushes the result.

· · · i1 i2 sub =⇒ · · · (i1 − i2)
pops the top two integers, subtracts them and pushes the result.

2



· · · i1 i2 mul =⇒ · · · (i1 × i2)
pops the top two integers, multiplies them and pushes the result.

· · · i1 i2 div =⇒ · · · (i1/i2)
pops the top two integers, divides them, and pushes the result. The result is undefined if i2 is
zero.

· · · i1 i2 mod =⇒ · · · i1 mod i2
pops the top two integers, divides them, and pushes the remainder. The result is undefined if
i2 is zero.

· · · i neg =⇒ · · · − i
pops the integer on the top of the stack and pushes its negation.

· · · v1 v2 equ =⇒ · · · b
pops and compares the two values on top of the stack. If they are equal, then it pushes 1,
otherwise it pushes 0. Note that if the values are pointers, then the comparison pushes true if
the pointers are equal

· · · v1 v2 less =⇒ · · · b
pops and compares the two integers on top of the stack. If v1 < v2, then it pushes 1, otherwise
it pushes 0.

· · · v1 v2 lesseq =⇒ · · · b
pops and compares the two integers on top of the stack. If v1 ≤ v2, then it pushes 1, otherwise
it pushes 0.

· · · v not =⇒ · · · b
pops v and pushes 1 if v = 0; otherwise it pushes 0.

· · · v boxed =⇒ · · · b
pops v and pushes 1 if v is boxed; otherwise it pushes 0.

Heap instructions

· · · v0 · · · vn−1 alloc(n) =⇒ · · · 〈v0, . . . , vn−1〉
allocates an n element record, which is initialized from the top n stack values.

· · · 〈v0, . . . , vn−1〉 explode =⇒ · · · v0 · · · vn−1

pops a tuple off the stack and pushes its elements.

· · · 〈v0, . . . , vn−1〉 select(i) =⇒ · · · vi

pops a record off the stack and pushes the record’s ith component.

Stack instructions

· · · int(n) =⇒ · · · n
pushes the integer n onto the stack.

· · · literal(i) =⇒ · · · si

pushes a reference to the ith string literal (si) onto the stack.

3



· · · label(l) =⇒ · · · addr
pushes the code address named by the label. Note that in the encoding of this instruction, the
code address is specified as an offset from the label instruction.

· · · v1 v2 swap =⇒ · · · v2 v1

swaps the top two stack elements.

· · · v0 v1 · · · vn−1 vn swap(n) =⇒ · · · vn v1 · · · vn−1 v0

swaps the top stack element with the n’th from the top. All other stack elements are un-
changed.

· · · vn · · · v0 push(n) =⇒ · · · vn · · · v0 vn

pushes the nth element from the top of the stack.

· · · v pop =⇒ · · ·
pops and discards the top stack element.

· · · v1 · · · vn pop(n) =⇒ · · ·
pops and discards the top n stack elements.

· · · loadlocal(n) =⇒ · · · v
fetches the value (v) in the word addressed by FP + n and pushes it on the stack. Note that a
function’s argument will be at offset 2, while the local variables start at offset −1.

· · · v storelocal(n) =⇒ · · ·
pops v off the stack and stores it in the word addressed by FP + n.

· · · loadglobal(n) =⇒ · · · v
fetches the value (v) in the word addressed by EP + n and pushes it on the stack.

· · · pushep =⇒ · · · ep
push the current contents of the EP on the stack.

· · · ep popep =⇒ · · ·
pop a value from the stack and store it in the EP.

Control-flow instructions

· · · jmp(n) =⇒ · · ·
transfer control to instruction PC + n.

· · · b jmpif(n) =⇒ · · ·
pops b off the stack and if b 6= 0 it transfers control to instruction PC + n.

· · · addr call =⇒ · · · pc
pop the destination address (addr ), push the current PC value (which will be the address of
the next instruction), and transfers control to addr .

· · · entry(n) =⇒ · · · fp w1 · · · wn

pushes the current value of the FP register and sets FP to SP. Then it allocates n uninitialized
words on the stack.

4



· · · arg pc fp · · · v ret =⇒ · · · v
pops the result v, resets the stack pointer to the frame-pointer; pops the saved FP into the FP
register, pops the return PC, pos the argument arg, pushes the result v, and then jumps to the
return address.

· · · arg pc fp · · · v addr tailcall =⇒ · · · v pc
pops the code address addr , the argument v, and the current frame off the stack (like ret),
stores v, and then transfers control to addr . Unlike the call instruction, this instruction does
not push the return PC.

· · · v1 · · · vm ccall(n) =⇒ · · · v
Calls the nth C function. The C function will pop its arguments (vi) from the stack and push
its result.

Miscellaneous instructions

· · · nop =⇒ · · ·
no operation.

· · · halt =⇒ · · ·
halts the program.

4 Implementing functions

MinML supports higher-order functions, which requires representing functions as heap-allocated
values. For example, consider the function

fun add x = let fun f y = (x + y) in f end

The add function has the type

val add : int -> int -> int

When applied to an integer argument n, it returns a function that will add the integer n to its ar-
gument. The representation of the result of add must include the value of n. In general, the
representation of a function will include the free variables of the function stored in a heap-allocated
tuple that we call the function’s environment. In this example, the environment has a single element
(the value of x). The representation of a function must also contain the address of the function’s
code. We could store this address in the environment tuple, but for reasons we explain below, we
instead represent a function as a pair of its code address and a pointer to its environment; we call this
pair the closure of the function. Thus, the generated code for add would look like the following:

5



code for f

code for g

x

y

z

env. ptr.

code ptr.

env. ptr.

code ptr.

f

g

Figure 1: Representation of mutually-recursive functions

Label Instruction Comment
add: entry(0)

label(f)
loadlocal(2) push x
alloc(1) allocate environment
alloc(2) allocate (code ptr., env. ptr) pair
ret

f: entry(0)
loadglobal(0) push global variable x
loadlocal(2) push y
add
ret

Things are a bit more complicated with mutually recursive functions. The approach that we
take is to share a common environment between the functions, which is why we use the two-level
representation of functions. For example, consider

fun f a = if (a < 0) then 1 else g(a+x)
and g b = f(b*y + z)

In this case, the environment of f and g will have three values: x, y, and z. Figure 1 gives a
pictorial representation of the representation of f and g. Note that in this case, since f and g share
the same EP, the calls between the functions can be direct.

4.1 Calling conventions

An MinML function application “e1 e2” is implemented using a four-part protocol.

1. The caller evaluates the function and argument expressions from left to right and pushes the
results onto the stack. Then a swap instruction is used to get the function closure on top of

6



argument

return PC

saved FP

local 
variables

FP

SP

high address

low address

Figure 2: Stack-frame layout

the stack, which is then exploded into its code-pointer/environment-pointer parts. The closure
is loaded into the EP register using the popep instruction. Then the function is called (using
the call) instruction, which has the effect of pushing the address of the following instruction
on the stack. This protocol is realized by the following sequence of instructions:

evaluate e1

evaluate e2

swap swap the argument and function values
explode pop the closure and push the environment and code pointers
popep load the EP with the function’s environment pointer
call call the function

2. The first instruction in the function is an entry instruction, which pushes the caller’s frame-
pointer, sets the new frame pointer to point to the top of the stack, and then allocates space
for local variables. Figure 2 illustrates the layout of a function’s stack frame after the entry
protocol has been executed.

3. When the callee is finished and the return result is on the top of the stack, it executes a ret
instruction, which pops the result, deallocates the local variable space, restores the caller’s
frame pointer, pops the function’s argument, and transfers control to the return address with
the result on the top of the stack.

4. When control is returned to the address following the call, the caller must save the return
result, which will be on top of the stack, and restore the caller’s EP.

There are two important variations on this protocol. The first is when a function calls itself or a
mutually-recursive function. In that case, the EP already holds the environment pointer and does
not have to be set. The second case is when the function call is a tail call, i.e., the last action a
function takes before returning. Tail calls are used to implement looping in functional languages
The VM has a special tailcall operator that discards the caller’s stack frame and does not push
the return PC.

4.2 An example

To illustrate the VM, consider the following MinML program:

7



fun fact n = if (n <= 0) then 1 else n * fact(n-1);
fact 5

The fact function has one argument (n) and no local variables. The argument n will be located at
+4 from the frame pointer, while i is at −2 and p is at −4 from the frame pointer. The VM code
for this program is given in Figure 3 (we do not include the basis initialization code). In this code,
we are saving and restoring the EP across the call to fact by pushing it on the stack before the call
and poping it afterwards.

5 Intializing the Basis

To provide a richer programming model, we expand the basis from Project 3 with some additional
operations.1 Figure 4 gives the signature of the basis library. These functions have the same closure
representation as any other function, but their implementation requires hand-crafted bytecodes.

The VM starts execution with the top of the stack pointing to a list of the command-line argu-
ments and the PC pointing to the first instruction in the code stream. Furthermore, you must initial-
ize the pervasive environment by creating closures for the predefined top-level functions. Thus, you
should view a program

let decls in exp

as being in a context roughly like

let
val args = ...
fun print s = ...
fun fail s = ...
...
decls in exp

The creation of the args function requires popping the command-line arguments off the stack and
putting them in the environment of the args function. At the end of the code for exp, your code
generator should place a halt instruction.

The fail function should be implemented by printing its argument to the standard output and
then halting.

5.1 Runtime functions

The VM provides the ccall instruction to invoke C functions. C functions expect their arguments
on the stack and return their result on the stack.2 C functions are specified by an index into the C
function table.

The VM provides the following runtime system functions. We present them using the same
convention that we used to present the semantics of the bytecode instruction set.

· · · fid str "MinML_print" =⇒ · · ·
prints the string to the file specified by fid . Use 0 for the standard output.

1We omit the predefined operators, since they should be directly translated to bytecode instructions.
2The project handout states that “It is the responsibility of the caller to remove the arguments from the stack,” but I

have decided that it is easier to let the runtime functions pop their arguments.

8



Label Instruction Comment
_main: entry(2)

pushep
storelocal(-1) save the EP in the stack frame
int(0) fact’s empty environment
label(fact)
alloc(2) allocate fact’s closure
storelocal(-2) store as local variable
loadlocal(-2) push fact’s closure
int(5)
swap
explode
popep set EP to callee’s environment
call
pop discard result
loadlocal(-1) restore caller’s EP
halt

fact: entry(0)
loadlocal(2) push n
int(0)
lesseq is (n < 0)?
jmpif(L1)
loadlocal(2) push n
loadlocal(2) push n
int(1)
sub compute n-1
label(fact)
call self-recursive call of fact(n-1)
mul compute n*fact(n-1)
jmp(L2)

L1: int(1)
L2: ret

Figure 3: VM code for factorial program

9



datatype bool = false | true
datatype ’a list = nil | :: of (’a * ’a list)
type unit
type int
type string

val args : unit -> string list

val print : string -> unit

val fail : string -> ’a

val itos : int -> string

val size : string -> int
val sub : string * int -> int
val substring : string * int * int -> string
val concat : string list -> string

Figure 4: The MinML Basis

· · · str "MinML_size" =⇒ · · · n
pops the string str and pushes its length.

· · · lst "MinML_concat" =⇒ · · · str
pops a list of strings and pushes their concatenation.

· · · str i "MinML_sub" =⇒ · · · chr
pops a string and an integer index and pushes the integer code of the character at the given
position.

· · · str i n "MinML_substring" =⇒ · · · str
pops a string (str ), integer index (i), and integer length (n), and pushes the substring of str
that starts at position i and has n characters.

· · · i "MinML_intToString" =⇒ · · · str
pops an integer and pushes its string representation.

· · · str1 str2 ""MinML_stringCmp" =⇒ · · · n
pops two strings, compares them, and pushes −1 if str1 is lexically less than str2, 0 if str1

is equal to str2, or 1 if str1 is lexically greater than str2.

If any of these functions encounters an error (e.g., index out of bounds), then the VM halts.

5.2 Wrapping C functions

As part of your bootstrap code, you will need to wrap calls to C functions inside MinML-style
functions. For example, the value print names an MinML function that takes a single string
argument and prints it to the standard output. The code for this function is as follows:

10



print:
entry(0)
int(0)
loadlocal(2)
ccall("MinML_print")
ret

Note that the value itself is a closure and will have to be allocated on the heap and then stored as a
local in the top-level function

label(print)
alloc(1)
int(0)
storelocal(print)

6 The code generation API

The code generation API is organized into three modules. The Emit module implements code
streams, which are an abstraction of the generated output file; the Labels module implements
labels for naming code locations, and the Instructions module implements an abstract type of
VM instructions. Each of these modules is described below.

6.1 Code streams

A code stream provides a container to collect the instructions emitted by your code generator. You
create a code Once code generation is complete, you invoke the finish operation which does an
assembly pass and then writes the binary object file to disk. The Emit module also provides hooks
for registering string literals and C functions.

6.2 Labels

The Labels module defines an abstract type of label that is used to represent code locations.
The Emit structure provides the defineLabel function for associating a label with the current
position in the code stream, and the control-flow instructions take labels as arguments. There is also
an instruction for pushing the value of a label on the stack, which is required to create closures (see
Section 4).

6.3 Instructions

The Instructions module provides an abstract type that represents VM instructions. For those
instructions that take arguments, it provides constructor functions and for those without arguments,
it provides abstract values.

11



6.4 Instruction encodings

Most instructions in the VM are either one, two, or three bytes long.3 The first byte is consists of
a two-bit length field (bits 6 and 7), and a six-bit opcode field (bits 0-5). The length field encodes
the number of extra instruction bytes (i.e., zero for one-byte instructions, one for two-byte instruc-
tions, and two for three-byte instructions). In the case of the two and three byte instructions, the
extra bytes contain immediate data (e.g., the offset of a load instruction), which is stored in 2’s
complement big-endian format.4 Figure 5 gives a list of the instructions and their lengths; note that
some instructions have both one and two or two and three-byte forms. The actual opcodes for the
VM instructions are given in the opcode.sml file, which is part of the sample code.

7 Submission

We will create new projects on the gforge server with a sample implementation of the typechecker
and the code generation API. We will collect the projects at 10pm on Sunday March 11th from the
repositories, so make sure that you have committed your final version before then.

8 Document history

Feb. 22 Original version.

Feb. 26 Simplify and clarify datatype representations. Expand and correct discussion of C func-
tions; add MinML_stringCmp to runtime functions. Remove unused index instruction
from the instruction set.

March 2 Correct description of tailcall instruction.

March 8 Fixed error in data-representation table.

3The one exception if the int instruction, which has a five byte form.
4The term “big-endian” means that the most significant byte comes first. For example, the number 513 is represented

as the byte sequence 2, 1.

12



Instruction Length Comment
add, sub, mul, div, mod, neq, equ,
less, lesseq, not, boxed

1

alloc(n) 2 if 0 ≤ n < 256
alloc(n) 3 if 256 ≤ n < 216
select(i) 2 if 0 ≤ i < 256
select(i) 3 if 256 ≤ i < 216
explode 1
int(n) 2 if −128 ≤ n < 128
int(n) 3 if n < −128 or 128 ≤ n
int(n) 5 if n < −215 or 215 ≤ n
literal(n) 2 if −128 ≤ n < 128
literal(n) 3 if n < −128 or 128 ≤ n
label(n) 2 if −128 ≤ n < 128
label(n) 3 if n < −128 or 128 ≤ n
swap 1
swap(n) 2 0 ≤ n < 256
push(n) 2 0 ≤ n < 256
pop 1
pop(n) 2 0 ≤ n < 256
loadlocal(n) 2 −128 ≤ n < 128
loadlocal(n) 3 if n < −128 or 128 ≤ n
storelocal(n) 2 −128 ≤ n < 128
storelocal(n) 3 if n < −128 or 128 ≤ n
loadglobal(n) 2 n < 256
loadglobal(n) 3 if 256 ≤ n < 216

pushep, popep 1
jmp(n) 2 if −128 ≤ n < 128
jmp(n) 3 if n < −128 or 128 ≤ n
jmpif(n) 2 if −128 ≤ n < 128
jmpif(n) 3 if n < −128 or 128 ≤ n
call(n) 2 if −128 ≤ n < 128
call(n) 3 if n < −128 or 128 ≤ n
entry(n) 2 0 ≤ n < 256
entry(n) 3 if 256 ≤ n < 216

ret, tailcall 1
ccall(i) 2 0 ≤ i < 256
nop, halt 1

Figure 5: VM instruction lengths

13


