
Algorithms – CMSC-37000

Method of Reverse Inequalities

Instructor: László Babai Ry-164 e-mail: laci@cs.uchicago.edu

Recurrent inequalities arise in the analysis of recursive algorithms. “Divide-
and-conquer” is one of the most successful recursive techniques that leads
to efficient algorithms.

In this note we consider a general technique to evaluate recurrent in-
equalities by “guessing” an upper bound. In the exercises below, M(n)
represents the cost of an algorithm on instances of size n, and g(n) is a
“guess function” which we use to bound M(n) from above.

1. (Special case, arising from the Karatsuba-Ofman multiplication of inte-
gers.)
Suppose the function M(n) > 0 satisfies the following recurrent inequality
for n ≥ 2:

M(n) ≤ 3M(bn/2c) + Cn. (1)

Suppose moreover that the function g(n) satisfies the reverse inequality (for
n ≥ 2):

g(n) ≥ 3g(bn/2c) + Cn (2)

and also satisfies the initial condition

g(1) ≥ M(1). (3)

Prove by induction that for every n,

M(n) ≤ g(n). (4)

2. Use this result to prove: if M(n) satisfies

M(n) ≤ 3M(bn/2c) + O(n) (5)

then M(n) = O(nlog 3). (log 3 = 1.5849.. < 1.585)

3. (More general version - still not the “most general” form.)
Suppose we have three functions r(x), s(x), t(x) such that

(a) r is monotone: if x1 ≤ x2 then r(x1) ≤ r(x2);

1



(b) if x ≥ 2 then s(x) < x.

(There is no condition on t(x).)

Suppose now the function M(n) > 0 satisfies the following recurrent in-
equality for n ≥ 2:

M(n) ≤ r(M(bs(n)c)) + t(n). (6)

Suppose that the function g(n) satisfies the reverse inequality (for n ≥ 2):

g(n) ≥ r(g(bs(n)c)) + t(n) (7)

and also satisfies the initial condition

g(1) ≥ M(1). (8)

Prove by induction that for every n,

M(n) ≤ g(n). (9)

(Note that the first result is a special case of the second: we need to set
r(x) = 3x, s(x) = x/2, t(x) = Cx.)

4. Use this more general form to prove:

4.1 If
M(n) ≤ 7M(bn/2c) + O(n2) (10)

then M(n) = O(nlog 7). (log 7 = 2.8073... < 2.81.)
(This function arises in the analysis of Strassen’s matrix multiplication al-
gorithm.)

4.2 If
M(n) ≤ 2M(bn/2c) + O(n) (11)

then M(n) = O(n log n).
(This function arises in the analysis of MERGE-SORT.)

5. (A recurrent inequality arising in an O(n) algorithm to find the median.)
Suppose the function M(n) > 0 satisfies the following recurrent inequality:

M(n) ≤ M(bn/5c) + M(b7n/10c) + O(n). (12)

Prove that M(n) = O(n).

Generalize the result of item 3 to fit this type of situation.

2


