
CS 221/321 Programming Languages Homework 1
Fall 2009 Due: Oct 13, 2009

1. [10 points] Consider the rules:

zero nat
(Rnat

zero) (1)

n nat

succ(n) nat
(Rnat

succ) (2)

n nat

leaf(n) tree
(Rtree

leaf ) (3)

l tree r tree

node(l, r) tree
(Rtree

node) (4)

These rules inductively define a set of terms nat representing natural numbers and a set of terms
tree representing binary trees with natural numbers at the leaves.

We can inductively (i.e. recursively) define the following reflect function on trees:

reflect(leaf(n)) = leaf(n)
reflect(node(l, r)) = node(reflect(r), reflect(l))

Give rules for an inductive definition of reflect as a binary relation, and then prove that this relation
is single valued (i.e. that the binary relation is a function).

2. [10 points] Consider the following rules defining a binary relation less on nats:

n nat

zero succ(n) less
(Rless

zero) (5)

n m less

succ(n) succ(m) less
(Rless

succ) (6)

Now consider the third rule
n nat

n succ(n) less
(Rless

incr) (7)

Is this third rule (a) a derived rule, (b) an admissible rule, or (c) neither. If it is a derived rule, give
a derivation. If it is an admissible rule, give an informal proof of that fact. If it is neither, explain
why.

Are the original two rules (5) and (6) sufficient to define the usual “less-than” ordering on natural
numbers? If so, give a derivation for succ3(zero) succ5(zero) less, (i.e. 3 < 5). If not, add a
rule (or rules) that will make less agree with the usual ordering.

3. [10 points] Do exercise 1 of Section 2.2 (page 14).



4. [20 points] The lambda calculus is a small language defined as follows:

• There is a countable set of variable symbols {x, y, z, . . .}.

• Each variable v is a lambda term.

• If M1 and M2 are lambda terms, then M1M2 is a lambda term (representing the application
of M1 to M2).

• If v is a variable symbol, and M is a lambda term, then λv.M is a lambda term (representing
a function, or lambda abstraction with formal argument v and body M ).

• Nothing else is a lambda term.

Some examples of lambda terms are: x; y (λz.x); λy.(xy); and (λy.x)y. Note that application
is denoted by the juxtaposition of the function subterm and the argument subterm. Application
associates to the left, so xyz is interpreted as (xy)z, and the scope of a lambda abstraction extends
as far the right as possible, so λx.xy is interpreted as λx.(xy), not as (λx.x)y.

(a) Give a context-free grammar for lambda terms (extra credit if it is unambiguous).

(b) Give a first-order abstract syntax for lambda terms.

(c) Give a rule set that inductively defines the set of lambda terms.

(d) Give an inductive definition of a function nlambdas on the abstract syntax of lambda terms that
counts the number of lambda abstractions. For example,

nlambdas((λx.x)(λy.z)) = 2
nlambdas((λx.λz.x)(λy.z)) = 3

nlambdas(λx.λz.x(λy.z)) = 3

2


