
Online Trading System Project Specifications
Distributed Objects CSPP 51024
Overview

An online trading system refers is a electronic marketplace where clients can connect
and post orders to buy and sell specified products. For the purposes of this
specification, the trading system is required to support a single product to exchange.
The trading system deploys a gateway for clients to connect to the trading server
and send and receive messages. The trading server, or trading engine, is
responsible for processing new orders received, placing them in an order book and
executing a matching function on the order book. These functions occur whenever
the trading server receives a new order. The trading system accepts orders from
clients, sending acknowledgements, ACK’s, or negative acknowledgements NACK’s,
in response to communicate receipt of the order or rejection of the order to a given
client. If the match function results in actual matches of buyers and sellers, the
trading engine will communicate fill messages back to the parties involved in the
transaction. Normally this would be a secure communication between the server and
the individual clients involved in the transaction, but this specification only requires
that the fill message contain unique identifiers for the buyer and seller (and that the
buyer and seller client programs process only the fill information that is related to
their unique identity). Whenever information passes into the trading engine that
results in material change in the state of the order book, the trading engine will
publish market data messages. These messages are anonymous and represent
aggregated data. The last message will include the price, quantity and time of a fill
or trade, the book message will contain up to the top three buy and sell price levels
(after all matching has resolved). Trading systems have extensive audit
functionality, for this specification the only required audit capability is two
administrative web pages that show 1) all messages sent and received organized by
type and 2) all trades (fills) executed during the session and some aggregated
measures.

The trading client is intended to be either a graphical user interface (GUI) which may
take the form of a web page, java swing application, console application (run in a
shell) or an applet or an automated trading system (ATS) that will consist of a
console application that prints status to the screen. The client will have some audit
requirements, a web page that can show the information related to messages the
client has sent and received and information about fills (trades) that the client has
executed in the market.

This specification also contains a series of optional functions. These are not
required, but can enhance its functionality and add value to the final evaluation of
the delivered product. They are diverse in nature offering opportunities to add to the
project in areas of strength if so desired. Optional requirements are described at the
end of each section, and of course, the developer may add their own optional
features with documentation to improve performance or enhance functionality.

Client Gateway

The client gateway is responsible for managing connections with clients. Clients
send messages to the gateway where they are evaluated for proper syntax and
passed along to the trading engine. The gateway has the primary function of
verifying messages are of the proper format, but the gateway may also determine if
the contents of the message are legal and may generate the ACK’s or NACK’s related
to the results of the process. The other option a developer may make is to allow the
gateway to simply check format and transmit NACK’s to clients when they send
malformed messages while leaving content analysis and generation of ACK’s and
content-related NACK’s to the trading engine.

An optional function that the gateway may have is to verify client connections using
a PING/PONG message scheme. The client would send a PING message that
contains content the gateway would use to determine if the client identified is
already connected and if the client has the proper authorization (password) to verify
the connection authenticity.

Example:

a. A client sends in a limit order to buy 10 at 100. The client time is missing:

LIMIT clientID 1 clSeqID 1 quantity 10 price 100

The gateway generates a NACK:

NACK clientID 1 clSeqID 1 quantity 10 price 100 clTime mkTime 1103760000000 reason no client time

Trading Engine

A series of functions are executed with each new order that is entered into the
market. The orders are sorted into product order book made up of a buy order book
and a sell order book. The sorted book then goes through a matching process that
uses a first-in-first-out (FIFO) matching algorithm to match orders. Finally any
matches are reported out both as fills and changes in the order book, are reported
out as anonymous market data.

The trading engine maintains an order book that sorts the client orders by buys and
sells, sorting the buys first by descending price, then by the time the order was
entered into the market (the market timestamp). The sells are sorted first by
ascending price, then by the time the order was entered into the market.

The match process works as follows:

1. Take the highest bid and lowest offer and compare,
a. If bid < ask, do nothing and report any changes in the book through

market data.
b. If bid = ask, a match occurs in the LOWER of the bid and ask quantity,

each order at the matching price level is matched individually, if a

quantity of 10 sells is matched against 10, quantity of 1 buys, then
there are 10 trades generated (10 fill messages, 10 market data last
messages).

c. If bid > ask, then find the market time stamp of the highest bid price
and lowest ask price, if the ask has the later time stamp, then match
at the bid price, otherwise match at the ask price until the highest bid
< lowest ask.

The match uses a FIFO algorithm, this means that the order book is sorted in time
priority and then the top bid is matched against lower or equal ask prices until the
quantity of the bid is exhausted, moving then to the next bid order in the order book
priority queue. Likewise, the top ask is matched against bids that have a greater or
equal price until its quantity is exhausted, and so forth.

Each order match is reported in a fill message that is published through the same
channels as market data. Clients are expected to use their unique ID as set by the
server to determine whether they are party to the transaction.

An optional function would be to publish a CLOSE message when the trading engine
is halted (closed). This message would be published through the same market data
function as fills. It would be expected that any client could use this message to
gracefully cease.

Examples

a. A client places an order to buy 10 at 100

LIMIT clientID 1 clSeqID 1 quantity 10 price 100 clTime 1103760000000

b. Results in an ACK from the server

ACK clientID 1 clSeqID 1 mktSeqID 11 clTime 1103760000000 mktTime 1103760000050

c. The order to buy 10 at 100 goes into the book and a match process kicks off:

Book Book after order to buy 10 at 100
Bids Price Ask Bids Price Ask

 102 11 102 11
 101 100 101 100
 100 7 10 100 7
6 99 6 99
55 98 55 98

Assume there are two orders to sell at 100 one for 5 and one for 2
Matching occurs
The sell order of 2 was placed
first Matching occurs, part 2
Match the 2 first Now the sell order for 5 is matched
Bids Price Ask Bids Price Ask

 102 11 102 11
 101 100 101 100
8 100 5 3 100
6 99 6 99
55 98 55 98

MATCH 2 at 100 MATCH 5 at 100
Send FILL message Send FILL message
Print market data for trade Print market data for trade

d. Assume clientID 2 has the order to sell 2, mrkSeqID 4 and clientID 3 has the

order to sell 5, mrkSeqID 6, the FILL messages look like:

FILL buyerID 1 sellerID 2 quantity 2 price 100 buyerMrkSeqID 11 sellerMrkSeqID 4 mrkTime
1103760000100

FILL buyerID 1 sellerID 3 quantity 5 price 100 buyerMrkSeqID 11 sellerMrkSeqID 6 mrkTime
1103760000105

e. A book market data message is published after the match process is completed.

(Message is described in following section).

Market Data

Market data is the anonymous messages published for general consumption. There
are two required messages, the last message and the book message. The last
message is published whenever there is an order match. The last message also has
the total volume traded and the total number of trades. The book message is
published whenever a new order is processed and a match function occurs. The
book message consists of a repetitive optional structure, that requires only the first
bid with aggregate quantity and first ask with aggregate quantity to be passed, but
can allow up to the top 5 bids with corresponding aggregate quantity and top 5 asks
with corresponding aggregate quantity. Aggregate quantity refers to the total
quantity associated with bids or asks at a given price level.

Examples

a. Remembering the example in the last section, here are the two trade market

data messages:

The trade of 2 at 100 (assume the trade is the first of the session):

last price 100 quantity 2 mktTime 1103760000100 mktVolume 2 mktTrades 1

The trade of 5 at 100 (assume the trade is the second of the session):

last price 100 quantity 5 mktTime 1103760000105 mktVolume 7 mktTrades 2

b. Again referring to example in the last section here are two book messages:

Before the match occurred:

book bid1 99 bqty1 6 ask1 100 aqty1 7 bid2 98 bqty2 55 ask2 101 aqty2 100 ask3 102 aqty3 11

After the match occurred:

book bid1 100 bqty1 3 ask1 101 aqty1 100 bid2 99 bqty2 6 ask2 102 aqty2 11 bid3 98 bqty3 55

Note the book message may have up to 5 price levels per the message specification,
but the passed message may only have the non-zero price levels defined.

System Audit

The system audit function must be able to list messages sent and received by the
server sorted by internal identifying sequence number and message type. Another
list provided will show trades including the buyer and seller system ID’s, quantity,
price, time and a running total of Volume and trades for each trade that is done.

The structure of the pages are left to the developer.

Requirements Summary

The online trading engine (server) has a set of primary functional requirements:

• Managing client connectivity to the exchange and organizing client orders in
an order book.

• Executing a first-in-first-out matching algorithm when new orders enter the
market.

• Transmitting order fills to clients and broadcasting market data to clients.
• Recording all incoming and outgoing messages and provide an interface that

can show the data in an organized fashion including important market
statistics.

The online trading client also has a set of primary functional requirements:

• Establishing a connection to the trading engine (server).
• Handling order acknowledgements, negative acknowledgments and fill

(trade). messages from the trading engine (server).
• Handling market data broadcast from the trading engine (server).

There are a set of “optional” functions that may be implemented related to:

• On the trading engine,
o Client connectivity, implementing an authentication process when a

client first connects.
o Elegant handling of multiple clients, for example, an implementation

where no two clients may enter orders with the same identification
signature.

o Enhanced statistical information stored or reported.
o A process that notifies clients of market close.

• On the trading client,
o A well designed GUI for order entry.
o A well designed “intelligent” automated trading system (ATS).
o Recording and accessing relevant data related to orders sent to the

market and fills (trades) in the market.

Concluding Tips

• There are a lot of ways to design and engineer the solution, there is no
expected coding or technology for any component. At the end of the day, the
customer will have to decide whether you met the required functionality
described and how you achieved it is secondary to functionality.

• Implement the system using the technology with which you are most
comfortable, or at least get the parts of the system using familiar technology
finished first.

• You can always add improvements, so concentrate on required functionality in
development process while leaving yourself room to add the optional stuff if
you have time.

Appendix – Message Specification

Order Entry

TAG Tag
Type

Value
Type

Comment

LIMIT Header None Header Tag for limit order message
ClientID Data Long Int Assumed unique identifier

maintained at server for client

ClSeqID Data Long Int Assumed unique sequence number
for client messages passed to
server

Quantity Data Integer Non-zero integer value; positive
indicates bid, negative ask

Price Data Integer Non-zero integer value; positive
indicates new order, negative
cancel of a existing order

ClTime Data Long Int UTC milliseconds

ACK Header None
ClientID Data Long Int Assumed unique identifier

maintained at server for client

ClSeqID Data Long Int Assumed unique sequence number
for client messages passed to
server

MktSeqID Data Long Int Sequence number assigned to the
order to identify the order at the
server

ClTime Data Long Int UTC milliseconds
MktTime Data Long Int UTC milliseconds

NACK Header None
ClientID Data Long Int Assumed unique identifier

maintained at server for client

ClSeqID Data Long Int Assumed unique sequence number
for client messages passed to
server

Quantity Data Integer Non-zero integer value; positive
indicates bid, negative ask

Price Data Integer Non-zero integer value; positive
indicates new order, negative
cancel of a existing order

ClTime Data Long Int UTC milliseconds
MktTime Data Long Int UTC milliseconds
Reason Text String Reason for rejection

FILL Header None
BuyerID Data Long Int Assumed unique identifier

maintained at server for client

SellerID Data Long Int Assumed unique identifier
maintained at server for client

Quantity Data Integer Non-zero integer value; positive
indicates bid, negative ask

Price Data Integer Non-zero integer value; positive
indicates new order, negative
cancel of a existing order

BuyerMktSeqID Data Long Int Sequence number assigned to the
order to identify the order at the
server

SellerMktSeqID Data Long Int Sequence number assigned to the
order to identify the order at the
server

MktTime Data Long Int UTC milliseconds

Market Data

TAG Tag
Type

Value
Type

Comment

last Header None
Price Data Integer Price of trade

Quantity Data Integer Quantity of trade

MktTime Data Long Int UTC milliseconds

MktVolume Data Long Int Total quantity traded in session

MktTrades Data Integer Total number of trades in
session

book Header None

Bid1 Data Integer Top Bid Price
BQty1 Data Integer Aggregate Qty at top bid price

Ask1 Data Integer Top Ask Price
AQty1 Data Integer Aggregate Qty at top ask price
Bid2 Data Integer Optional
BQty2 Data Integer Optional, Aggregate Qty
Ask2 Data Integer Optional
AQty2 Data Integer Optional, Aggregate Qty
Bid3 Data Integer Optional

BQty3 Data Integer Optional, Aggregate Qty

Ask3 Data Integer Optional
AQty3 Data Integer Optional, Aggregate Qty
Bid4 Data Integer Optional
BQty4 Data Integer Optional, Aggregate Qty
Ask4 Data Integer Optional
AQty4 Data Integer Optional, Aggregate Qty

Bid5 Data Integer Optional

BQty5 Data Integer Optional, Aggregate Qty

Ask5 Data Integer Optional

AQty5 Data Integer Optional, Aggregate Qty

MktTime Data Long Int UTC milliseconds

Optional Messages

Market State

TAG Tag
Type

Value
Type

Comment

PING Header None
ClientID Data Long Int Assumed unique identifier

maintained at server for client

ClTime Data Long Int UTC milliseconds

PONG Header None

ClientID Data Long Int Assumed unique identifier
maintained at server for client

ClTime Data Long Int UTC milliseconds
MktTime Data Long Int UTC milliseconds

NPONG Header None
ClientID Data Long Int Assumed unique identifier

maintained at server for client
ClTime Data Long Int UTC milliseconds
MktTime Data Long Int UTC milliseconds
Reason Text String Reason for rejection

CLOSE Header None

MktTime Data Long Int UTC milliseconds

