
CMSC 22610
Winter 2009

Implementation of
Computer Languages - I

Handout 3
January 29, 2009

Predictive Parsing Notes

1 Grammars for Propostional Formulae

Infix
P → var
P → ¬ P
P → P ∧ P
P → P ∨ P

Infix with parens
P → var
P → ¬ P
P → P ∧ P
P → P ∨ P
P → (P)

Prefix
P → var
P → ¬ P
P → ∧ P P
P → ∨ P P

Postfix
P → var
P → P ¬
P → P P ∧
P → P P ∨

Prefix with parens
P → var
P → ¬ P
P → ∧ P P
P → ∨ P P
P → (P)

Postfix with parens
P → var
P → P ¬
P → P P ∧
P → P P ∨
P → (P)

Function-style prefix
P → var
P → ¬ (P)
P → ∧ (P , P)
P → ∨ (P , P)

Function-style postfix
P → var
P → (P) ¬
P → (P , P) ∧
P → (P , P) ∨

Function-style prefix with parens
P → var
P → ¬ (P)
P → ∧ (P , P)
P → ∨ (P , P)
P → (P)

Function-style postfix with parens
P → var
P → (P) ¬
P → (P , P) ∧
P → (P , P) ∨
P → (P)

1

Scheme-style prefix
P → var
P → (¬ P)
P → (∧ P P)
P → (∨ P P)

Scheme-style postfix
P → var
P → (P ¬)
P → (P P ∧)
P → (P P ∨)

Scheme-style prefix with parens
P → var
P → (¬ P)
P → (∧ P P)
P → (∨ P P)
P → (P)

Scheme-style postfix with parens
P → var
P → (P ¬)
P → (P P ∧)
P → (P P ∨)
P → (P)

• Which grammars denote the same context-free languages?

• Which grammars are unambiguous? which are ambiguous?

• Which grammars have immediate left recursion?

• Which grammars can be left factored?

• Which grammars are LL(1)?

• Which grammars are LL(2)?

• Which grammars are not LL(k) for any k?

• Which grammars denote languages that are LL(1)?

• Which grammars denote languages that are LL(2)?

• Which grammars denote languages that are not LL(k) for any k?

2

2 Recursive-Descent Parsing
The idea of recursive descent parsing is that a CFG can be mapped directly to a collection of mutually-
recursive functions, with one function for each nonterminal and one clause for each production. For
example, consider the following grammar:

Imperative Boolean Language
S → if P then S else S
S → while P do S
S → var = P
S → begin S L
S → print P

L → ; S L
L → end

P productions from Function-style prefix

Given a suitable definition of tokens and functions for fetching tokens from the token stream, we can write
SML functions for parsing S, L, and P:

datatype token = EOP (* special end-of-parse token *)
| KW_if | KW_then | KW_else | KW_while | KW_do
| KW_begin | KW_end | KW_print | Var of string
| EQ | SEMI | NOT | AND | OR | LPAREN | RPAREN | COMMA

(* returns the current token. *)
fun curTok () : token = ...
(* discards the current token, and moves to the next token *)
fun advanceTok () : unit = ...

fun advanceIfTok (tok) =
if (curTok () = tok) then advanceTok () else error ()

fun error () = raise ParseError

fun parseS () = (case curTok () of
KW_if => (advanceTok (); (* consume KW_if token *)

parseP ();
advanceIfTok (KW_then); parseS ();
advanceIfTok (KW_else); parseS ())

| KW_while => (advanceTok (); (* consume KW_while token *)
parseP ();
advanceIfTok (KW_do); parseS ())

| Var _ => (advanceTok (); (* consume Var token *)
advanceIfTok (EQ); parseP ())

| KW_begin => (advanceTok (); parseS (); parseL ())
| KW_print => (advanceTok (); parseP ())
| _ => error ())

3

and parseL () = (case curTok () of
SEMI => (advanceTok (); parseS (); parseL ())

| KW_end => (advanceTok ())
| _ => error ())

and parseP () = (case curTok () of
Var _ => (advanceTok ())

| NOT => (advanceTok (); advanceIfTok (LPAREN);
parseP (); advanceIfTok (RPAREN))

| AND => (advanceTok (); advanceIfTok (LPAREN);
parseP (); advanceIfTok (COMMA);
parseP (); advanceIfTok (RPAREN))

| OR => (advanceTok (); advanceIfTok (LPAREN);
parseP (); advanceIfTok (COMMA);
parseP (); advanceIfTok (RPAREN))

| _ => error ())

(* Parsing the whole input requires that, after parsing an S, *)
(* the final token is the EOP token. *)
fun parse () = (parseS (); advanceIfTok (EOP))

2.1 Constructing the abstract parse tree
A realistic parser, in addition to recognizing that a string is derivable in the grammar, will construct an
abstract parse tree, reflecting the relevant portions of the derivation tree.

and parseP () = (case curTok () of
Var s => Prop.Var s

| NOT => let
val _ = advanceTok () val _ = advanceIfTok (LPAREN)
val p = parseP () val _ = advanceIfTok (RPAREN)

in
Prop.Not p

end
| AND => let

val _ = advanceTok () val _ = advanceIfTok (LPAREN)
val p = parseP () val _ advanceIfTok (COMMA)
val q = parseP () val _ advanceIfTok (RPAREN)

in
Prop.And (p, q)

end
| OR => let

val _ = advanceTok () val _ = advanceIfTok (LPAREN)
val p = parseP () val _ advanceIfTok (COMMA)
val q = parseP () val _ advanceIfTok (RPAREN)

in
Prop.Or (p, q)

end
| _ => error ())

4

2.2 Limitations of Recursive-Descent Parsing
Can we apply the same technique to parse the P productions for Postfix? If we try, then we are led to write
the following function for parseP:

and parseP () = (case curTok () of
Var _ => (advanceTok ())

| ?? => (parseP () advanceIfTok (NOT))
| ?? => (parseP (); parseP (); advanceIfTok (AND))
| ?? => (parseP (); parseP (); advanceIfTok (OR))
| _ => error ())

The parseP function has no way to know which clause to use; consider parsing the strings x y ∧ ¬ and
x y ¬ ∧. In the former case, the initial call to parseP should use the P→ P P ∧ production, but the latter
case should use the P→ P ¬

• Which grammars from Section 1 can be parsed with recursive-descent parsing?

5

3 Grammar Transformations
There are a few grammar transformations that can turn a grammar that cannot be parsed with recursive-
descent parsing into one that is more amenable to recursive-descent parsing.

3.1 Eliminating Immediate Left-recursion
A nonterminal A exhibits immediate left-recursion if there is production of the form A→ A β. (A
grammar exibits left-recursion if there is a nonterminal A such that A⇒+ A β.)

Infix
without immediate left recursion

P → var P’
P → ¬ P P’

P’ → ∧ P P’
P’ → ∨ P P’
P’ → ε

Infix with parens
without immediate left recursion

P → var P’
P → ¬ P P’
P → (P) P’

P’ → ∧ P P’
P’ → ∨ P P’
P’ → ε

Postfix
without immediate left recursion

P → var P’

P’ → ¬ P’
P’ → P ∧ P’
P’ → P ∨ P’
P’ → ε

Postfix with parens
without immediate left recursion

P → var P’
P → (P) P’

P’ → ¬ P’
P’ → P ∧ P’
P’ → P ∨ P’
P’ → ε

• Which of these grammars are ambiguous?

• Which of these grammars can be parsed with recursive-descent parsing?

• How do we know when to use the P’→ ε productions?

6

3.2 Left Factoring
A grammar for which there are two productions for the same nonterminal that begin with same terminal
(A→ a β1 and A→ a β2) cannot be parsed with recursive-descent parsing. We can delay the choice of
production by using left-factoring.

Postfix
without immediate left recursion

with left factoring
P → var P’

P’ → ¬ P’
P’ → P Z
P’ → ε

Z → ∧ P’
Z → ∨ P’

Postfix with parens
without immediate left recursion

P → var P’
P → (P) P’

P’ → ¬ P’
P’ → P Z
P’ → ε

Z → ∧ P’
Z → ∨ P’

Function-style postfix
with left factoring

P → var
P → (P Z

Z →) ¬
Z → , P) Y

Y → ∧
Y → ∨

Function-style postfix with parens
with left factoring

P → var
P → (P Z

Z →) Y
Z → , P) X

Y → ¬
Y →)

X → ∧
X → ∨

Scheme-style prefix
with left factoring

P → var
P → (Z

Z → ¬ P)
Z → ∧ P P)
Z → ∨ P P)

Scheme-style postfix
with left factoring

P → var
P → (P Z

Z → ¬)
Z → P Y

Y → ∧)
Y → ∨)

7

Scheme-style prefix with parens
with left factoring

P → var
P → (Z

Z → ¬ P)
Z → ∧ P P)
Z → ∨ P P)
Z → P)

Scheme-style postfix with parens
with left factoring

P → var
P → (P Z

Z → ¬)
Z → P Y
Z →)

Y → ∧)
Y → ∨)

• Which of these grammars are “obviously” grammars for boolean expressions?

• Which of these grammars can be parsed with recursive-descent parsing?

• How do we know when to use the P’→ ε productions?

• For a grammar that can be parsed with recursive-descent parsing, how would you construct the
abstract parse tree?

8

3.2.1 Constructing the Abstract Parse Tree with Higher-Order Functions

When we delay the choice of production by using left-factoring, the new nonterminal can return a function
representing the chosen production.

(* Function-style postfix with left factoring *)
and parseP () : Prop.prop = (

case curTok () of
Var s => Prop.Var s

| LPAREN => let val _ = advanceTok ()
val p = parseP ()
val z = parseZ ()

in z p
end

| _ => error ())
and parseZ () : Prop.prop -> Prop.prop = (

case curTok () of
RPAREN => let val _ = advanceTok ()

val _ = advanceIfTok (NOT)
in fn p => Prop.Not p
end

| COMMA => let val _ = advanceTok ()
val p = parseP ()
val _ = advanceIfTok (RPAREN)
val y = parseY ()

in y p
end

| _ => error ())
and parseY () : Prop.prop -> Prop.prop -> Prop.prop = (
case curTok () of

AND => (advanceTok ();
fn q => fn p => Prop.And (p, q))

| OR => (advanceTok ();
fn q => fn p => Prop.Or (p, q))

| _ => error ())

• Suppose we did not require the parseZ and parseY functions to have types of the form
unit -> Is there a simpler way to construct the abstract parse tree?

9

3.3 Specifing Precedence and Associativity
A common source of ambiguity in grammars is the precedence and associativity of operators. We can
specify precedence in a grammar by requiring lower precedence operators to contain equal-or-higher
precedence operators (and prohibit higher precedence operators from containing lower precedence
operators).

Infix with parens
with {∨} < {∧} < {¬}

P → O

O → O ∨ O
O → A

A → A ∧ A
A → Z

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {∧} < {∨} < {¬}

P → A

A → A ∧ A
A → O

O → O ∨ O
O → Z

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {¬} < {∨} < {∧}

P → N

N → ¬ N
N → O

O → O ∨ O
O → A

A → A ∧ A
A → Z

Z → var
Z → (P)

• How would the string ¬ x ∧ ¬ y ∨ z be parsed in each of these grammars?

– {∨} < {∧} < {¬}: ((¬ x) ∧ (¬ y)) ∨ z

– {∧} < {∨} < {¬}: (¬ x) ∧ ((¬ y) ∨ z)

– {¬} < {∨} < {∧}: no parse

10

We can specify associativity in a grammar by requiring equal-or-higher precedence operators in one
branch and strictly higher precedence operators in the other branch.

Infix with parens
with {∨L} < {∧L} < {¬}

P → O

O → O ∨ A
O → A

A → A ∧ Z
A → Z

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {∧R} < {∨R} < {¬}

P → A

A → O ∧ A
A → O

O → Z ∨ O
O → Z

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {∨L,∧L} < {¬}

P → OA

OA → OA ∧ Z
OA → OA ∨ Z
OA → Z

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {∨R,∧R} < {¬}

P → OA

OA → Z ∧ OA
OA → Z ∨ OA
OA → Z

Z → var
Z → ¬ Z
Z → (P)

• How would the string a ∧ b ∧ c ∨ d ∧ e ∨ f ∧ g ∨ h ∨ i be parsed in each of these grammars?

– {∨L} < {∧L} < {¬}: (((((a ∧ b) ∧ c) ∨ (d ∧ e)) ∨ (f ∧ g)) ∨ h) ∨ i

– {∧R} < {∨R} < {¬}: a ∧ (b ∧ ((c ∨ d) ∧ ((e ∨ f) ∧ (g ∨ (h ∨ i)))))

– {∨L,∧L} < {¬}: (((((((a ∧ b) ∧ c) ∨ d) ∧ e) ∨ f) ∧ g) ∨ h) ∨ i

– {∨R,∧R} < {¬}: a ∧ (b ∧ (c ∨ (d ∧ (e ∨ (f ∧ (g ∨ (h ∨ i)))))))

• Which of these grammars are ambiguous?

• Which of these grammars can be parsed with recursive-descent parsing?

11

Infix with parens
with {∨L} < {∧L} < {¬}

without immediate left recursion
P → O

O → A O’

O’ → ∨ A O’
O’ → ε

A → Z A’

A’ → ∧ Z A’
A’ → ε

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {∧R} < {∨R} < {¬}

with left factoring
P → A

A → O A’

A’ → ∧ A
A’ → ε

O → Z O’

O’ → ∨ O
O’ → ε

Z → var
Z → ¬ Z
Z → (P)

• Are the A’ and O’ productions reminiscient of any other transformations we have seen?

12

Next week, we’ll see how shift-reduce parsing admits an easy specification of precedence and associativity
of operators in an LR parser specification. Nonethless, Extended BNF can be used to give a concise
specification for a parser generator that supports EBNF.

Infix with parens
with {∨L} < {∧L} < {¬}

using Extended BNF
P → O

O → A (∨ A)∗

A → Z (∧ Z)∗

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {∧R} < {∨R} < {¬}

using Extended BNF
P → A

A → O (∧ A)?

O → Z (∨ O)?

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {∨L,∧L} < {¬}
using Extended BNF

P → OA

OA → Z ((∧ | ∨) Z)∗

Z → var
Z → ¬ Z
Z → (P)

Infix with parens
with {∨R,∧R} < {¬}

using Extend BNF
P → OA

OA → Z ((∧ | ∨) Z)?

Z → var
Z → ¬ Z
Z → (P)

• For these grammars using Extended BNF, how would you construct the abstract parse tree?

13

4 LL(k) Parsing
Recursive-descent parsing can be generalized to automatically generated table-driven top-down parsers,
known as LL(k) parsing algorithms.

• L : left-to-right parse

• L : leftmost derivation

• k : k-symbols lookahead

4.1 Nullable, First, and Follow
For a grammar G = 〈N , T , S,P〉 we define the following properties:

A ∈ N Nullable(A) =

{
true if A⇒∗ ε
false otherwise

A ∈ N First(A) = {a | a ∈ T and A⇒∗ aβ}
A ∈ N Follow(A) = {a | a ∈ T and S ⇒∗ βAaγ}

a ∈ T First(a) = {a}
a ∈ T Nullable(a) = true

α ∈ (N ∪ T)∗ Nullable(α) =

{
true if α⇒∗ ε
false otherwise

4.1.1 Computing Nullable, First, and Follow

Nullable

foreach a ∈ T do
Nullable(a)← false

end
foreach A ∈ N do

Nullable(A)← false
end
do

foreach A→ X1 · · ·Xn ∈ P do
if Nullable(X1) and · · · and Nullable(Xn) (* true if X1 · · ·Xn = ε *)

then Nullable(A)← true
end

until Nullable does not change

Note that we can easily extend Nullable to sequences of terminals and non-terminals:

Nullable(ε) = true
Nullable(Xα) = Nullable(X) ∧Nullable(α)

14

First
foreach a ∈ T do

First(a)← {a}
end
foreach A ∈ N do

First(A)← {}
end
do

foreach A→ X1 · · ·Xn ∈ P do
foreach i ∈ {1, . . . , n} do

if Nullable(X1 · · ·Xi−1)
then First(A)← First(A) ∪ First(Xi)

end
end

until First does not change

Note that we can easily extend First to sequences of terminals and non-terminals:

First(ε) = {}

First(Xα) =

{
First(X) if Nullable(X) = false
First(X) ∪ First(α) if Nullable(X) = true

Follow
foreach A ∈ N do

Follow(A)← {}
end
do

foreach A→ X1 · · ·Xn ∈ P do
foreach i ∈ {1, . . . , n} do

if Xi ∈ N and Nullable(Xi+1 · · ·Xn)
then Follow(Xi)← Follow(Xi) ∪ Follow(A)

foreach j ∈ {i+ 1, . . . , n} do
if Xi ∈ N and Nullable(Xi+1 · · ·Xj−1)

then Follow(Xi)← Follow(Xi) ∪ First(Xj)
end

end
end

until Follow does not change

15

4.1.2 Examples

Consider Nullable, First , and Follow for Infix with parens with {∨L}< {∧L}< {¬} without immediate
left recursion. The subscripts indicate the iteration in which the boolean was set or the symbol was added
to the set.

Nullable First Follow
S false0 {var5,¬5,(5} {}
P false0 {var4,¬4,(4} {)1,$1}
O false0 {var3,¬3,(3} {)2,$2}
O’ true1 {∨1} {)2,$2}
A false0 {var2,¬2,(2} {∨1,)2,$2}
A’ true1 {∧1} {∨1,)2,$2}
Z false0 {var1,¬1,(1} {∨1,∧2,)3,$3}

Consider Nullable, First , and Follow for Infix with parens without immediate left recursion.

Nullable First Follow
S false0 {var2,¬2,(2} {}
P false0 {var1,¬1,(1} {∧1,∨1,)1,$1}
P’ true1 {∧1,∨1} {∧2,∨2,)2,$2}

Consider Nullable, First , and Follow for Prefix.

Nullable First Follow
S false0 {var1,¬1,∧1,∨1} {}
P false0 {var1,¬1,∧1,∨1} {var1,¬1,∧1,∨1,$1}

Consider Nullable, First , and Follow for Postfix.

Nullable First Follow
S false0 {var1} {}
P false0 {var1} {var1,¬1,∧1,∨1,$1}

Consider Nullable, First , and Follow for Scheme-style prefix.

Nullable First Follow
S false0 {var2,(2} {}
P false0 {var1,(1} {(1,)1,$1}

Consider Nullable, First , and Follow for Scheme-style postfix.

Nullable First Follow
S false0 {var2,(2} {}
P false0 {var1,(1} {¬1,∧1,∨1,$1}

16

4.2 LL(1) Parse Tables
4.2.1 Computing LL(1) Parse Tables

foreach A ∈ N do
foreach a ∈ T do

M [A, a]← {}
end

end
foreach A→ X1 · · ·Xn ∈ P do

if Nullable(X1 · · ·Xn) then
foreach a ∈ Follow(A) do

M [A, a]←M [A, a] ∪ {A→ X1 · · ·Xn}
end

foreach a ∈ First(X1 · · ·Xn) do
M [A, a]←M [A, a] ∪ {A→ X1 · · ·Xn}

end
end

If any M [A, a] has more than one production, then the grammar is not LL(1).

17

4.3 Examples
Consider the LL(1) parse table for Infix with parens with {∨L} < {∧L} < {¬} without immediate left
recursion.

var ¬ ∧ ∨ () $
S S → P $ S → P $ S → P $
P P → O P → O P → O
O O → A O’ O → A O’ O → A O’

O’ O’ → ∨ A O’ O’ → ε O’ → ε
A A → Z A’ A → Z A’ O → Z A’

A’ A’ → ∧ Z A’ A’ → ε A’ → ε A’ → ε
Z Z → var Z → ¬ Z Z → (P)

Consider the LL(1) parse table for Infix with parens without immediate left recursion.

var ¬ ∧ ∨ () $
S S → P $ S → P $ S → P $
P P → var P’ P → ¬ P’ P → (P)

P’
P’ → ε

P’ → ∧ P P’
P’ → ε

P’ → ∨ P P’
P’ → ε P’ → ε

Consider the LL(1) parse table for Scheme-style prefix.

var ¬ ∧ ∨ () $

S S → P $ S → P $

P P → var
P → (¬ P)

P → (∧ P P)
P → (∨ P P)

18

4.4 LL(1) Parsing Algorithm
stack ← [] (* empty stack *)
push(S, stack)
while not empty(stack) do

X ← pop(stack)
if X ∈ T then

if X == curTok() then advanceTok() else error()
else if M [X, curTok()] = {A→ Y1 · · ·Yn} then

push(Yn, stack) ; · · · ; push(Y1, stack)
else error()

end
accept()

4.5 LL(1) Parsing Example
Suppose we wish to parse a ∧ b ∨ c in the Infix with parens with {∨L}< {∧L}< {¬} without immediate
left recursion grammar using the LL(1) parsing algorithm.

Stack Input Action
S ȧ ∧ b ∨ c $ parse S→ P $
$ P ȧ ∧ b ∨ c $ parse P→ O
$ O ȧ ∧ b ∨ c $ parse O→ A O’
$ O’ A ȧ ∧ b ∨ c $ parse A→ Z A’
$ O’ A’ Z ȧ ∧ b ∨ c $ parse Z→ var
$ O’ A’ var ȧ ∧ b ∨ c $ consume var token
$ O’ A’ ∧̇ b ∨ c $ parse A’→∧ Z A’
$ O’ A’ Z ∧ ∧̇ b ∨ c $ consume ∧ token
$ O’ A’ Z ḃ ∨ c $ parse Z→ var
$ O’ A’ var ḃ ∨ c $ consume var token
$ O’ A’ ∨̇ c $ parse A’→ ε
$ O’ ∨̇ c $ parse O’→∨ A O’
$ O’ A ∨ ∨̇ c $ consume ∨ token
$ O’ A ċ $ parse A→ Z A’
$ O’ A’ Z ċ $ parse Z→ var
$ O’ A’ var ċ $ consume var token
$ O’ A’ $̇ parse A’→ ε

$ O’ $̇ parse O’→ ε

$ $̇ consume $ token
accept

Note that the stack records what is to be parsed in the future.

19

4.6 LL(k) for k > 1

To use more symbols of lookahead, we extend the definition of First to Firstk:

A ∈ N Firstk(A) = {a1 · · · ak | {a1, . . . , ak} ⊆ T and A⇒∗ a1 · · · akβ}
∪ {a1 · · · aj | j < k and {a1, . . . , aj} ⊆ T and A⇒∗ a1 · · · aj}

Consider First2 for Scheme-style prefix.

First2

S {var1,(¬1,(∧1,(∨1}
P {var1,(¬1,(∧1,(∨1}

Consider the LL(2) parse table for Scheme-style prefix.

var (¬ (∧ (∨ otherwise
S S → P $ S → P $ S → P $ S → P $
P P → var P → (¬ P) P → (∧ P P) P → (∨ P P)

Consider First2 for Scheme-style postfix with parens.

First2

S {var1,((1}
P {var1,((1}

Consider the LL(2) parse table for Scheme-style postfix with parens.

var ((otherwise
S S → P $ S → P $

P P → var

P → (P ¬)
P → (P P ∧)
P → (P P ∨)

P → (P)

20

