CMSC 22610 Implementation of Handout 4
Winter 2009 Computer Languages - I February 3, 2009

Shift-Reduce Parsing Notes

1 LR(k)Parsing Overview

e [: left-to-right parse
e 1 : rightmost derivation

e k : k-symbols lookahead

1.1 LR Parsing Example

Suppose we wish to parse a A b V ¢ in the Infix with parens with {V} < {AL} < {—} grammar using
the LR parsing algorithm.

First, consider a rightmost derivation of the string in the grammar:

S S—P$
= PS$§ P — 0
= 05§ O — 0OV A
= OV AS A — Z
= OV ZS$ Z — var
= 0Vc$ O — A
= AVcS$ A—ANZ
= ANZVcS Z — var
= AANbVCS A — Z
= ZANbVc$ Z — var
= aANbVc$
Now, consider the execution of the LR parsing algorithm:
Stack Input Action
aANbVc$ shiftvar
var AbVc$ reduce Z — var
V4 AbVc$ reduceA —Z
A AbVc$ shift A
AN bV e $ shift var
A N var Vc$ reduce Z — var
ANZ Ve$ reduiceA—ANZ
A Vc$ reduce O — A
(0] Vc$ shiftV
ov ¢$ shift var
OV var $ reduce Z — var
ovZ $ reduce A —Z
OVA $ reduceO — OV A
o $ reduce P — O
P $ accept

The algorithm works by performing a sequence of reductions that correspond to the rightmost derivation
in reverse. Furthermore, note that if we concatenate the stack with the input in one line of the execution,
then we obtain a line in the rightmost derivation. In essence, the stack records what was parsed in the past.

1.2 LR Parsing Concepts

Although there are several variations on LR parsing (in addition to varying k), they all share some basic
concepts and the same parsing algorithm.

1.2.1 States and Items

An LR parser maintains a stack of states. Each state is a set of items. In its fullest generality, an LR item
is a production, a position within the production, and k-symbols of lookahead:

<A — Xy - Xmiagl"'gk>

Every state may be mapped to a sequence of terminals and nonterminals; hence, in the example above, we
used terminals and nonterminals on the stack.

1.2.2 Action Table

The action table is indexed by states and (sequences of) terminal symbols; every entry in the table is one
of four possible kinds of actions:

e shift ¢
e reduceA — X; --- X,
e accept

® €rror

1.2.3 Goto Table

The goto table is indexed by states and nonterminal symbols; every entry in the table is a state.

1.24 LR(k < 1) Parsing Algorithm

stack «— || (* empty stack *)
push(so, stack)
while true do
s «— peek(stack)
if Actionls, curTok()] = {shift ¢} then
push(t, stack) (* t represents the current token *)
advanceTok()
else if Action[s, curTok()] = {reduce A — X; --- X,,} then
pop(stack) 5 --- 5 pop(stack)

S

~\~
n

t < Goto|peek(stack), A
push(t, stack) (* t represents the A *)
else if Action[s, curTok()] = {accept} then
break
else error()
end
accept()

2 LR(0) Parsing

LR(0) is the weakest of the LR parsing methods (using 0 symbols of lookahead), but serves as the basis
for the other methods.

2.1 Definitions

Since an LR(0) parser uses no symbols of lookahead, its items are of the form:
(A — Xy -+ X, 19)
which we will often write using the notation:
A — X7 - X Xi -0 X
For a set of items I, we define Closure and Closed as follows:

Closure(I) = TU{[B — .f(]|[A — «.B~| € Closure(I)and B — 3 € P}

true [= Closure(I)
false otherwise

Closed(I) = {

States in an LR(0) parser are closed sets of items.

Given a set of items I, the kernel of I is the smallest set J C I such that Closure(J) = Closure(I). We
may efficiently represent closed sets (hence, states) by their kernels. All kernel items (i.e., items in the
kernel of a set of items) must be of the form [§ — .S $]or[A — « . 7] where a # .

For a state I, we define Goto as follows:

Goto(I,X) = Closure({[A — a X .f]|[A — a.X (] €}

2.2 Computing Closure

The closure of a set of items / can be computed by the following algorithm:

Closurey «— {I}
do
foreach [A — « . X ~] € Closure; do
foreach B — (3 € P do
if B = X then
Closurey < Closure; U{[B — .]}
end
end
until Closure; does not change

2.3 Computing Canonical States

The canonical LR(0) states (item sets) are computed by the following algorithm:

Iy « Closure({[S — .S $]})
C {I()}
do
foreach / € C' do
foreach X € ((7 \ {$}) UN) do
J — Goto(I,X)
if J#£Dand J ¢ C
then C — C U {J}
end
end
until C' does not change

2.4 Computing Action Tables

To construct the LR(0) action table:

e initialize Action[I,a] = {}for] € C'anda € 7.
e add actions according to the following rules (for I € C'):

— if Goto(I,a) = J and J # 0,
then add shift .J to Action|[I, a.

—if[§ — S.8$] <1,
then add accept to Action[I, $].

—if[A — X, --- X,]€TandA # S,
then add reduce A — X; --- X, to Action[l,a] foreacha € 7.

If any Action|[l, a] entry has more than one action, then the grammar is not LR(0).

The zero tokens of lookahead is captured by the fact that the reductions do not depend upon the current
input token.

2.5 Computing Goto Tables

To construct the LR(0) goto table:

o if Goto(I,A) = J and J # 0,
then set Goto[l, A] equal to goto J.

2.6 Example

Consider computing the canonical LR(0) states for Postfix.

Iy = {[S— .P$],
[P — .var],[P — .P—|,[P — .PPA],[P — .PPV]|}

l

Goto(Iy,var) =
Goto(ly,—)
Goto(Iy, N)

Goto(Iy, V)

)
P)

Goto(Iy,
Goto(Iy,

L = {[P — var.}
Goto(I,_) = 0

I, = {[S— P.$§,[P - P.<],[P - P.PA,I[P — P.PV],
[P — .var],[P — .P~-],[P — .PPA],[P — .PPV]}

!

Goto(Iy,var) =
Goto (I, —)
Goto(lz, N)

Goto(ls,V)

)
P)

Goto(Is,
Goto(Is,

[3:

{[P - P-.]}
Goto(I3,_) =)

L = {[P— PP.A,P — PP.V|,
[P — P.=],[P — P.PA,P — P.PV],
[P — .var],[P — .P~],[P — .PPA],[P — .PPV]}
Goto(Ily,var) =
Goto(Iy,—) =
Goto(Iy,) =
Goto(1y,V) =
Goto(I,S) =

)
Goto(1y,P) =

Goto(Is,_) = 0

Is = {[p —- PPV]}
Goto(lg,_) = 0

Now consider computing the LR(0) action and goto tables for Postfix.

Action Goto

var - A V $ S P

IO S[l gIQ
Ii| TP — var rP — var rP — var rP — var rP — var

IQ SIl SI3 a gI4
Is5| rP — P~ rP — P— rP — P— rP — P~— rP — P-

]4 SIl SI3 S]5 S]G g]4
Is|\rP - PPN rP - PPN TP - PPN tP - PPN rP - PPA
Ig|rP - PPV rP - PPV rP - PPV rP - PPV rP —- PPV

Now consider parsinga b A ¢ V:

Stack
Iy
In I
I() _[2
Io [2]1
Iy I, 1y
Iy Iy 1, I
I() Ig
]0 _[2]1
Io _[2]4
I() _[2]4 I6
[0 12

Input Action
abAcV$ shift I
b/\cV$ reduce P — var
bAcV$ shift I
AcV $ reduce P — var
AcV $§ shift I;
¢V $ reduceP — PPA
¢V $§ shift [,
V' $ reduce P — var
V' § shift I
$ reduce P — PPV
$ accept

3 Simple LR (SLR) Parsing

The major weakness of LR(0) action tables is that any reduction reduces on every input token. This
property can lead to conflicts, but we can avoid some of these conflicts by only reducing when the next
input token is in the Follow set.

S LR parsing uses the same items, Closure and Goto functions, canonical states, and goto table as LR(0)
parsing. The only difference is in the computation of the action table and, furthermore, only in the rule to
add a reduce item to the table.

3.1 Computing Action Tables

To construct the SL R action table:

e initialize Action[l,a] = {}for] € Canda € 7.
e add actions according to the following rules (for I € C'):
- if Goto(I,a) = J and J # 0,
then add shift J to Action|I, a).

—if[§ — S.$] €1,
then add accept to Action[l, $].

—if[A - X, --- X,]€TandA # S,
then add reduce A — X --- X, to Action[l,a] for each a € Follow(A).

If any Action|l, a] entry has more than one action, then the grammar is not SLR.

3.2 Example
Consider computing the canonical LR(0)/SLR states for Infix with parens with {V} < {Ar} < {—}.

Iy =

—

!
~
s

!
=

— .0 V A],|[0 — .A]
— A NZ,A — .Z,
— var|,|[Z — .=Z,[Z — . (P)]}

N>=>Q Wl wm

Goto(Iy,var)
Goto(Iy, —
Goto(Iy, N
Goto(Iy,V
Goto(1y, (
Goto(1y,)
Goto(Iy, $

Goto(Iy, S

P
o
A

Rep e

w

N oo NS S~

Goto(Iy,
Goto(Iy,
Goto(Iy,
Goto(ly,Z

1 | | I V|
S

)
)
)
)
)
)
)
)
)
)
)

I
Goto(1y,_)

{[Z — var.]}
0

I
Goto(Iy,var
Goto(1s,
Goto(Is,
Goto(I3,
Goto(Is,
Goto(Is,

(

(

{[Z — —|.Z],[Z — .var],[— .—|Z],[Z — (P)]}
L

Goto(1s,
Goto(1s,
Goto(Is,
Goto(I3,
Goto(Is,

)
)
)
)
)
)
)
)
)
)
(12,A)
Goto(Iy,Z)

A
Vv
(
)
$
S
P
o
A

I3

(

(
Goto(I3,

(

(

Goto(I3,S
Goto(]3,
Goto(I3,
G0t0(13,
Goto(I.

Goto(1ly,_)

I5
Goto(I5,V)
Goto(I5,_)

Is
Goto(Ig, \)
Goto(Is,_)

I7
Goto(I7,_)

Is
Goto(lg, _)

Iy
Goto(ly,))
Goto(Iy,_)

Lyl

(.P)],

0],

L0V ALI0 — A
ANZA - .7,

varl,[Z —

.],[Z—>

—

10

(P)]}

)

)
GOtO([lo,)
GOtO(Ilo,)
GOtO(Ilo,)
GOtO(Ilo,)
GOtO(IlO’)
Goto(Iyo,)
GOtO([lo,)
GOtO(Il(),)
GOtO(Il(),)
GOtO(Ilo,)

GOtO([ll,
GOtO(IH,
GOtO(]H,
GOtO(IH,

G0t0(113, /\)
GOtO(Ilg, _)

Iy

NS S S S NSES = N

G0t0(114, _) =

{[0 — 0 Vv .A],

[A—> ANZA — .7,
—7,[Z

[z varl,[Z —

wb

w

NS S S NS = N

5
w

(A — AN .2,
Z —

varl,[Z —

fopliiny

w

—
W~

{[Z — (P)]}
0

{0 = 0V Al]A—A. NZ}

—2,z

I
0

{[A - ANZ]}
0

11

Now consider computing the LR(0) action and goto tables for Infix with parens with {V } < {Ap} <

{=)

Action
var - A \Y, () $
Iy sy s I s I3
I rZ — var rZ — var rZ — var rZ — var rZ — var rZ — var rZ — var
I s s I s I3
I3 s Iy s I s I3
n a
Is| tP— o0 rP — O rP — O s Do rP — O rP — 0 rP — O
rP — O
Is| 10— A ro — A s Iu ro — A ro — A ro — A ro — A
rO — A
17 rA — Z rA — Z rA — Z rA — Z rA — Z rA — Z rA — Z
I rA — —Z rA — —Z rA — —Z rA — —Z rA — = Z rA — —Z rA — —Z
Ig SIlg
I s s I s I3
I sy s Iy s I3
Iis| rZ — (P) rZ — (P) rZ — (P) rZ — (P) rZ — (P) rZ — (P) rZ — (P)
Li3|trO - OVA rO— OVA r0—5>1101\/A rO - 0OVA rO0O—-0VA r0O—-0VA rO— 0VA
Ly| TA—-ANZ 1A —-ANZ rA A ANZ rA -ANZ 1A —-ANZ 1tA—-ANZ 1tA—-ANZ
Goto
S P O A Z
I gly gls gls gl
L
I gls
I gly gl; gls glr
I
I
I
Iz
Iy
Iy
Lo ghs glr
Iy g 4
112
I3
Iy

12

4 LR(1)Parsing

LR(1) is the strongest of the practical LR parsing methods. (LR parsing with k& > 0 quickly leads to
impractically large parsing tables.)

4.1 Definitions

Since an LR(1) parser uses one symbol of lookahead, its items are of the form:
<A - Xl Xnvl7g>
which we will often write using the notation:

<[A — Xy Xp Xy e Xn],a>

An LR(1)item ([A — X; --- X; . X;41 --- X,], a) represents a parser configuration where X; --- X;
is at the top of the stack and the input has a prefix that is derivable from X;,; --- X, a (that is,
Xii1 -+ X, a =" v and the input is u v).

For a set of items I, we define Closure and Closed as follows:

Closure(I) = ITU{{([B — .8],b)|{(|]A — «.B~|,a) € Closure(I)and B — [€ P
and b € First(ya)}

true [= Closure(I)
false otherwise

Closed(I) = {
States in an LR(1) parser are closed sets of items.

For a state /, we define Goto as follows:

Goto(I,X) = Closure({([A — a X .f,a)|([A — a.X f],a) € I})
We can compute Closure and the canonical LR(1) states using the same techniques as above.

4.2 Computing Closure

The closure of a set of items / can be computed by the following algorithm:

Closurer «— {I}
do
foreach ([A — «a . X 7],a) € Closure; do
foreach B — (€ P do
if B = X then
foreach b € First(y a) do
Closurer «— Closure; U {([B — .],b)}
end
end
end
until Closure; does not change

13

4.3 Computing Canonical States

The canonical LR(1) states (item sets) are computed by the following algorithm:

Iy « Closure({([S — .S$],$)})
C {I()}
do
foreach 7 € C' do
foreach X € ((7 \ {$}) UN) do
J — Goto(1,X)
if J#Dand J ¢ C
then C — C U {J}
end
end
until C' does not change

4.4 Computing Action Tables

To construct the LR(1) action table:

e initialize Action[I,a] = {}for] € C'anda € 7.
e add actions according to the following rules (for I € C'):

- if (A — «a.a®l],_) € I and Goto(1,a) = J,
then add shift .J to Action|[I, a.

—if([§ — S.8],$) e,
then add accept to Action[I, $].

—if (A — X, --- X,],a) € Tand A # S,
then add reduce A — X; --- X, to Action[I, al.

If any Action|I, a] entry has more than one action, then the grammar is not LR(1).
4.5 Computing Goto Tables
To construct the LR(1) goto table:

e if Goto(I,A) = J and J # 0,
then set Goto[l, A] equal to goto J.

14

5 LALR(1) Parsing

The number of canonical LR(1) states for a grammar can be very large. We can reduce the number of
states by merging any states whose items are identical when ignoring the lookahead token. We compute
action and goto tables as before. The resulting parse table is an LALR(1) (Look-Ahead LR(1)) parse
table.

Because we are merging states, the LALR(1) parse table may have conflicts where the LR (1) parse table
did not. Hence, LALR(1) is weaker than LR(1) (but stronger than SLR). However, such conflicts are
rare in practical programming langauges, and the benefit of the significantly smaller parse tables has made
LALR(1) the dominant parsing method.

15

