
CMSC 22610
Winter 2009

Implementation of
Computer Languages - I

Project 2
January 22, 2009

LangF Parser
Due: February 6, 2009

1 Introduction

The second project is to implement a parser for LangF, which will convert a stream of tokens into an abstract
parse tree. The grammars for most programming languages are of sufficient complexity that such components of
a compiler are best written using a parser generator, an external tool that takes the specification of a grammar
and produces code for a corresponding parser. (Parser generators can also analyze the grammar sepecification and
identify potential ambiguities.) You may use either ML-Yacc or ML-Antlr to generate your parser; both tools
target Standard ML. ML-Yacc generates parsers that use an LALR(1) parsing algorithm, while ML-Antlr generates
parsers that use an LL(k) parsing algorithm. There are links to the manuals for both tools in the Resources section
of the course web site; ML-Yacc is also described in Chapter 3 of Modern Compiler Implementation in ML. The
project seed code will provide an ML-ULex based scanner (but you may also adapt your hand-written scanner
from Project 1), modules implementing the parse-tree representation, and skeleton grammar specifications for both
ML-Yacc and ML-Antlr.

2 LangF Grammar

The concrete syntax of LangF is specified by the grammar given in Figures 1 and 2.
If one ignores the parenthetical annotations, then the grammar is ambiguous in the Type and Exp nonterminals.

In order to make the grammar unambiguous, the parenthetical annotations specify the precedence and associativity
of the Type and Exp productions. The Type and Exp productions are given in order of increasing precedence; higher
precedence productions bind more tightly than lower precedence productions. L (resp. R) indicates left (resp. right)
association of a keyword or operator.

To understand how to apply the precedence of productions to resolve ambiguity, we take Exp as an example.
Consider two productions, such that the first ends with an Exp and the second starts with an Exp. For example,
consider:

Exp→ if Exp then Exp else Exp and Exp→ Exp + Exp

Suppose that we must parse the sequence:

· · · · · · if · · · then · · · else Exp + · · · · · ·

where Exp stands for a token sequence that has already been determined to be an Exp (if necessary, by applying
precedence and associativity resolution). The higher precedence of the Exp + Exp production dictates that Exp
associate to the right; that is, the sequence should be parsed as:

· · · · · · if · · · then · · · else (Exp + · · ·) · · · correct

and not as:
· · · (· · · if · · · then · · · else Exp) + · · · · · · incorrect

The latter parse requires explicit parentheses.
The associativity of keywords and operators resolves ambiguity among productions of the same precedence.

Suppose we must parse the sequence:

· · · · · · Exp1 ^ Exp2 ^ Exp3 · · · · · ·

1

Prog
::= Exp
| (Decl)∗ ; Exp

Decl
::= type tyconid TypeParams = Type
| datatype DataDecl (and DataDecl)∗

| val SimplePat (: Type)? = Exp
| fun FunDecl (and FunDecl)∗

TypeParams
::=
| [(tyvarid (, tyvarid)∗)?]

Type
::= [tyvarid] -> Type (lowest precedence)
| Type -> Type (R)
| tyconid TypeArgs
| tyvarid
| (Type) (highest precedence)

TypeArgs
::=
| [(Type (, Type)∗)?]

DataDecl
::= tyconid TypeParams = DaConDecl (| DaConDecl)∗

DaConDecl
::= daconid DaConArgTys

DaConArgTys
::=
| { (Type (, Type)∗)? }

SimplePat
::= varid
| _

FunDecl
::= varid Param+ : Type = Exp

Param
::= (varid : Type)
| [tyvarid]

Figure 1: The concrete syntax of LangF (A)

2

Exp
::= fn Param+ => Exp (lowest precedence)
| if Exp then Exp else Exp
| Exp orelse Exp (L)
| Exp andalso Exp (L)
| Exp : Type
| Exp op Exp op ∈ {==,<>,<,<=,>,>=} (L)
| Exp ^ Exp (R)
| Exp op Exp op ∈ {+,-} (L)
| Exp op Exp op ∈ {*,/,%} (L)
| ~ (AtomicExp | daconid)
| daconid TypeArgs DaConArgs
| ApplyExp (highest precedence)

DaConArgs
::=
| { (Exp (, Exp)∗)? }

ApplyExp
::= ApplyExp ApplyArg
| AtomicExp

ApplyArg
::= (AtomicExp | daconid)
| [Type]

AtomicExp
::= varid
| integer
| string
| (Exp (; Exp)+)
| let Decl+ in Exp (; Exp)∗ end
| case Exp of MatchRule (| MatchRule)∗ end
| (Exp)

MatchRule
::= Pat => Exp

Pat
::= daconid TypeArgs DaConPats
| SimplePat

DaConPats
::=
| { (SimplePat (, SimplePat)∗)? }

Figure 2: The concrete syntax of LangF (B)

3

where Exp1, Exp2, and Exp3 stand for token sequences that has already been determined to be Exps (if necessary, by
applying precedence and associativity resolution). The right associativity of the ^ operator dictates that the sequence
should be parsed as:

· · · · · · Exp1 ^ (Exp2 ^ Exp3) · · · · · · correct

and not as:
· · · · · · (Exp1 ^ Exp2) ^ Exp3 · · · · · · incorrect

The latter parse requires explicit parentheses.
Here are some examples:

b1 orelse b2 : Bool : Bool ≡ b1 orelse ((b2 : Bool) : Bool)
b1 andalso b2 : Bool orelse b3 ≡ (b1 andalso (b2 : Bool)) orelse b3

a + b * c + d ≡ (a + (b * c)) + d
"i = " ^ intToString i ^ "\n" ≡ "i = " ^ ((intToString i) ^ "\n")

[’a] -> ’a -> ’a -> ’a ≡ [’a] -> (’a -> (’a -> ’a))
fst [Integer] [Bool] 1 False ≡ (((fst [Integer]) [Bool]) 1) False

3 Requirements

You should complete either the ML-Yacc (langfc-src/parser/langf-yacc.grm) or the
ML-Antlr (langfc-src/parser/langf-antlr.grm) grammar specification. In addition to
writing a grammar specification for LangF, your grammar specification should include seman-
tic actions that construct an abstract parse tree representation of the input LangF program. The
structure ParseTree : PARSE_TREE module is provided in the seed code; the PARSE_TREE sig-
nature implementation is at langfc-src/parse-tree/parse-tree.sig and the ParseTree structure
implementation is at langfc-src/parse-tree/parse-tree.sml. Your parser should return a value of
type ParseTree.Prog.t.

The project seed code includes a compiler control (-Cparser=yacc / -Cparser=antlr) that selects be-
tween the ML-Yacc parser and the ML-Antlr parser. After deciding between ML-Yacc and ML-Antlr, you should
change the default setting to match your chosen parser. This default is specified by the parserCtl value in the
langfc-src/parser/wrapped-parser.sml file (lines 36 – 42).

3.1 Errors

Both ML-Yacc and ML-Antlr utilize parsing algorithms that integrate automatic error repair. Hence, your parser
specification need not explicitly support error reporting. (ML-Yacc does support declarations for improving error
recovery, which you are welcome to include in your specification.) However, the automatic error repair mechanisms
require that semantic actions be free of significant side effects, because error repair may require executing a produc-
tion’s semantic action multiple times. All of the functions in the ParseTree structure are pure; thus, they may be
freely used in semantic actions.

In order to support error reporting in the type-checker (to be implemented in Project 3), the abstract parse
tree must be annotated with position information. Therefore, each object in the parse tree is constructed
with a source span (Source.Span.t), which pairs the left and right source positions (Source.Pos.t)
of the object. The Source: SOURCE module is provided in the seed code; the SOURCE signature im-
plementation is at langfc-src/common/source.sig and the Source structure implementation is at
langfc-src/common/source.sml. Source positions and spans of terminals are provided by the scanner.
Consult the ML-Yacc and ML-Antlr manuals for information about how to access position information in semantic
actions.

4

4 GForge and Submission

Sources for Project 2 have been (or will shortly be) committed to your repository in the project2 sub-directory.
You will need to update your local copy, by running the command:

svn update

from the cnetid-proj directory.
We will collect projects from the SVN repositories at 10pm on Friday, February 6; make sure that you have

committed your final version before then. To do so, run the command:

svn commit

from the cnetid-proj directory.

5 Hints

• There is no “better choice” between ML-Yacc and ML-Antlr. Both tools and underlying parsing algorithms
have features that will make some portions of the LangF grammar more natural to specify and will make other
portions more difficult to specify. The reference solutions are of nearly identical length and complexity.

• To complete the assignment, you should only need to make changes to the
cnetid-proj/project2/langfc-src/parser/wrapped-parser.sml file and ei-
ther the cnetid-proj/project2/langfc-src/parser/langf-antlr.grm file or the
cnetid-proj/project2/langfc-src/parser/langf-yacc.grm file.

• Executing the compiler (from the cnetid-proj/project2 directory) with the command

./bin/langfc -Ckeep-parse=true file.lgf

will produce a file.parse.pt file that contains the abstract parse tree returned by the parser. Use this con-
trol and its output to check that your parser is working as expected. The tests/parser directory includes
a number of tests (of increasing complexity); for each testNN.lgf file, there is either a testNN.out file
containing the parse tree to be returned by the parser or, if the test has syntax errors, a testNN.err file
containing sample error messages.

• Because ML-Yacc and ML-Antlr provide automatic error repair, their error messages (and resulting parses)
are dependent upon the grammar specification. Hence, you are likely to produce error messages slightly
different from those found in the textNN.err files (and parses slightly different from those found in the
textNN.out).

5

6 Extra: Integrating a Hand-Written Scanner

If you would like to adapt your hand-written scanner from Project 1, then you will need extend
your implementation to include position and span information for tokens. You should copy your
implementation from cnetid-proj/project1/langfc-src/scanner/langf-scanner.sml into
cnetid-proj/project2/langfc-src/scanner/langf-hand-scanner.sml, which implements
the LangFHandScanner : LANGF_HAND_SCANNER module. The LANGF_HAND_SCANNER signature is as
follows:

signature LANGF_HAND_SCANNER =
sig

val scan : {getPos: ’strm -> ’pos,
forwardPos: ’pos * int -> ’pos,
reportErrorAt: ’pos * string -> unit} ->
(char, ’strm) StringCvt.reader ->
(Tokens.token * (’pos * ’pos), ’strm) StringCvt.reader

end

Note that scan is now a function that takes a character reader and returns a
Tokens.token * (’pos * ’pos) reader. To support position information and error reporting, the
LangFHandScanner.scan function takes an initial argument with

• a getPos: ’strm -> ’pos function for querying the current position of the input character stream,

• a forwardPos: ’pos * int -> ’pos function for computing the position n characters forward from
a given position, and

• a reportErrorAt: ’pos * string -> unit for reporting an error at a given position.

Figure 3 sketches how a hand-written scanner should use getPos to get the left position of a token and
forwardPos to compute the right position of a token. The tests/scanner directory includes the tests from
Project 1, updated with position information in the output and error files.

The project seed code includes a compiler control (-Cscanner=ulex / -Cscanner=hand) that selects
between the ML-ULex scanner and the hand-written scanner. Use this control to select the hand-written scanner
for an invocation of the compiler; alternatively, you can change the default setting. This default is specified by the
scannerCtl value in the langfc-src/scanner/wrapped-scanner.sml file (lines 36 – 42).

The testNN.out and testNN.err files in the tests/scanner directory have been updated with position
and span information for tokens and error messages.

Document History

February 4, 2009
Figure 2: Removed AtomicExp → daconid production and revised ApplyArg → AtomicExp
and Exp → ~ AtomicExp productions to ApplyArg → (AtomicExp | daconid) and
Exp → ~ (AtomicExp | daconid), respectively. This resolves an unintentional ambiguity in the grammar.

January 29, 2009 Changed due date to February 9, 2009.

January 27, 2009
Section 2: are given in order of decreasing precedence⇒ are given in order of increasing precedence

January 22, 2009 Original version

6

structure T = Tokens
fun scan {getPos: ’strm -> ’pos,

forwardPos: ’pos * int -> ’pos,
reportErrorAt: ’pos * string -> unit}

(charRdr: (char, ’strm) StringCvt.reader) :
(Tokens.token * (’pos * ’pos), ’strm) StringCvt.reader =

let
...
fun scan strm0 =

let
val pos0 = getPos strm0

in
case charRdr strm0 of

NONE => NONE
| SOME (#"+", strm1) =>

SOME ((T.PLUS, (pos0, forwardPos (pos0, 1))), strm1)
| ...

end
in

scan
end

Figure 3: Skeleton hand-written scanner with position information

7

