
CMSC 22610
Winter 2009

Implementation of
Computer Languages - I

Project 4
February 26, 2009

LangF VM Code Generator
Due: March 20, 2009

1 Introduction

The fourth project is to implement a simple code generator for LangF, which takes a high-level intermediate rep-
resentation and produces an object file for interpretation by a virtual machine. The virtual machine, described
below, is a stack-based interpreter. Code generation consists of two phases. The first phase translates the high-level
intermediate representation (the Core IR introduced in the third project and discussed in class) to a lower-level in-
termediate representation in which data representations and variable locations have been determined. The second
phase translates this low-level intermediate representation to bytecode instructions.

2 Representation&Location Intermediate Representation (RepLoc IR)

The first phase (provided in the project seed code) translates the high-level intermediate representation (the Core IR)
into a lower-level intermediate representation (the RepLoc IR). This intermediate representation makes a num-
ber of implementation decisions explicit. The main differences from the higher-level intermediate representa-
tions (such as the AST and the Core IR) are that anonymous functions have been eliminated, types have been
erased, data representations have been determined, and variable locations have been determined. In this sec-
tion, we describe some aspects of the RepLoc IR. Nonetheless, you will need to study and understand the
structure RepLocIR : REPLOC_IR module provided in the project seed code.

2.1 Anonymous Function Elimination

In LangF, one can introduce a function either anonymously, via the fn Param1 · · · Paramn => Exp
expression syntax, or named, via the fun varid1 Param1,1 · · · Param1,m1 : Type1 = Exp1 · · ·
and varidn Paramn,1 · · · Paramn,mn : Typen = Expn declaration syntax. The conversion from the AST to the
Core IR makes some simplifications, one being that all functions take exactly one parameter. Thus, in the Core IR,
one can introduce a function either anonymously, via expression syntax analogous to fn Param => Exp, or named,
via declaration syntax analogous to fun varid1 Param1 : Type1 = Exp1 · · · and varidn Paramn : Typen = Expn.

The conversion from the Core IR to the RepLoc IR makes a further simplification: all functions are introduced
via the declaration syntax. This is easily accomplished — we convert any anonymous function fn Param => Exp
expression to the following expression:

let fun varidf Param : TypeExp = Exp in varidf end

where varidf is a fresh variable identifier and TypeExp is the type of the expression Exp.

2.2 Type Erasure

As discussed in class, LangF can be interpreted and/or executed without tracking how type variables are instantiated.
Recall the evaluation rules for type-function introduction and application:

E ` fn [α] => Exp ⇓ Clos(E,[α],Exp)

E ` Expf ⇓ Closure(E′,[α],Exp)
E′ ` Exp ⇓ Val

E ` Expf [Typea] ⇓ Val

1

Notice that the argument type Typea does not affect the evaluation of the type-function body Exp; however, also
notice that the type-function body is not evaluated until the type-function is applied to a type. Similarly, recall that
a datatype declaration has no effect on the environment used for subsequent evaluation:

E ` datatype . . . ⇓ {}

Thus, the conversion from the Core IR to the RepLoc IR discards all type information: type arguments in data-
constructor expressions, datatype declarations, type arguments in data-constructor patterns, type annotations in
variable parameters, variable patterns, and val and fun declarations. Type-variable parameters and type arguments
in apply expressions are also eliminated, but, as noted above, the type-function body should not be evaluated un-
til the type-function is applied to a type. Rather than being completely eliminated, type-variable parameters and
type arguments in apply expressions are replaced by a dummy variable parameter and a dummy argument. That
is, we convert any (Core IR) function declaration varid [α] : Type = Exp to the following (RepLoc IR) function
declaration:

varid (varidu) = Exp

where varidu is a fresh variable identifier (and type annotations have been discarded) and we convert any (Core IR)
application Exp [Type] to the following (RepLoc IR) application:

Exp Unit

where Unit is a nullary data constructor.

2.3 Data Representations

All LangF values are represented by a single 32-bit machine word. In many cases, this word is a pointer to a heap-
allocated object, but it might also be an immediate value. Values that are represented as pointers (to heap-allocated
objects) are called boxed values, while values that are represented as immediate integers are called unboxed values.
As explained below, the values of a datatype may be both boxed and unboxed, in which case we describe the
corresponding type-constructor type as having a mixed represntation. Since type variables can be instantiated to
any type, they have a mixed representation. The Integer type is represented as an immediate integer, while the
String type is represented as a pointer (to a heap-allocated string). Function types are also represented as pointers
(to heap-allocated records) and are described in Section 4. Data constructors and datatype type-constructor types
are the interesting case.

The conversion from the Core IR to the RepLoc IR chooses a very simple data representation for data construc-
tors and datatype type-constructor types. Consider a datatype type constructor tyconid with the following
dacon declarations:

daconid0 { Type0,0 , . . . , Type0,k0
} | · · · | daconidn { Typen,0 , . . . , Typen,kn

}

Then the representation of daconi is determined by its number of arguments. If daconi is nullary (i.e., ki = 0),
then daconi is represented by the immediate integer i; hence, it is an unboxed value. (This corresponds to
RepLoc.DaConRep.UnboxedTag i in the project seed code.) If daconi is non-nullary (i.e., ki > 0), then
daconi { vi,0 , . . . , vi,ki

} is represented by a heap-allocated record 〈i, vi,0, · · · , vi,ki
〉 where the first element

is the immediate integer i and the subsequent elements are the values vi,0, · · · , vi,ki
; hence, it is a boxed value.

(This corresponds to RepLoc.DaConRep.TaggedBox i in the project seed code.) If the datatype type con-
structor tyconid is comprised entirely of nullary data constructors, then it will have an unboxed representation. If the
datatype type constructor tyconid is comprised entirely of non-nullary data constructors, then it will have a boxed
representation. Otherwise, it will have a mixed representation. Applying this convention to the following datatypes:

2

datatype Unit = Unit
datatype Bool = False | True
datatype Option [’a] = None | Some {’a}
datatype List [’a] = Nil | Some {’a, List [’a]}
datatype Pair [’a, ’b] = Pair {’a, ’b}

results in the following representations:

Type constructor Representation Data constructor Representation DaConRep
Unit unboxed Unit 0 UnboxedTag 0
Bool unboxed False 0 UnboxedTag 0

True 1 UnboxedTag 1
Option mixed None 0 UnboxedTag 0

Some {v} 〈1, v〉 TaggedBox 1
List mixed Nil 0 UnboxedTag 0

Cons {vh,vt} 〈1, vh, vt〉 TaggedBox 1
Pair boxed Pair {va,vb} 〈0, va, vb〉 TaggedBox 0

This convention is general-purpose, but has some inefficiencies in certain specific cases. We discuss a more
efficient convention in Section 7.

2.4 Variable Locations

During the execution of a LangF program, the same variable may denote multiple different values, depending upon
“where” the program is in its execution. Consider the following LangF program:

val zero = 0
val one = 1
val two = 2
fun fib (n : Integer) : Integer =
case n <= one of

True => one
| False =>

let
val a = fib (n - one)
val b = fib (n - two)

in
a + b

end
end

; fib (10 + zero)

Clearly, the variables n, a, and b take on different values at different times — for the execution of the function
application fib 10, n is 10, a is 55, and b is 34, while for the execution of the function application fib 9
(executed as part of the execution of fib 10), n is 9, a is 34, and b is 21.

For the tree interpretation of LangF programs developed in class, we used separate environments to keep track
of the value of a variable. Saving an environment (in the function-introduction rule), replacing an environment (in
the function-application rule), and extending an environment (in the function-application rule, the match-rule rule,
and the let-expression rule) ensured that the proper value for a variable is available when the variable is evaluated.

Maintaining a dynamic environment is simple to implement (see, for example, the Core IR interpreter in the
project seed code at langfc-src/core-ir/interpret.sml), but has some inefficiencies that can be elim-
inated when targetting a virtual machine (or a physical machine). In essence, we decide (once and for all) “where”

3

to find the value of a variable when at a particular program point. The “where” is called the variable’s location. In
the RepLoc IR, we distinguish four kinds of locations:

• Param: The variable is the current function’s parameter.

• Local(i): The variable is the ith local variable of the function. Every application of the function will have its
own copy of the local variables. Local variables are variables that are bound within the body of the function.

• Global(i): The variable is the ith global variable of the function. Every application of the function shares
the same global variables, which correspond to the free variables (or environment) of the function. Global
variables are variables that are bound outside the function.

• Self(f): The variable is the function named f from the function’s group of mutually recursive functions.

In the LangF program above, within the body of the fib function, the variables have the following locations:

Variable Location
n Param
a Local(0)
b Local(1)
one Global(0)
two Global(1)
fib Self

Similarly, in the program itself (that is, outside the body of the fib function), the variables have the following
locations:

Variable Location
zero Local(0)
one Local(1)
two Local(2)
fib Local(3)

The conversion from the Core IR to the RepLoc IR chooses a location for every variable. The location of a
variable may vary depending upon where the variable is being accessed from (for example, the variables one, two,
and fib are Local outside the body of the fib function, while they are Global and Self inside the body of the fib
function).

For a group of mutually-recursive functions, the conversion from the Core IR to the RepLoc IR also records the
list of variable locations (as accessed outside the functions) that are accessed as Global within the functions. These
variables correspond to the free variables (or environment) of the functions. (See Section 4 for more details.) Finally,
for each function and for the program itself, the conversion from the Core IR to the RepLoc IR records the maximum
number of local variables.

The choice of variable locations used by the conversion from the Core IR to the RepLoc IR is general-purpose,
but has some inefficiencies in certain specific cases. We discuss more efficient use of local variables in Section 7.

2.5 Example

To illustrate the RepLoc IR, Figure 1 gives the RepLoc IR program for the LangF program above.1

The #(4) at line 1 indicates that the program itself has four local variables (corresponding to zero, one, two,
and fib). Lines 3–5 correspond to the val declarations of zero, one, and two in the LangF program.

Lines 6–18 correspond to the fun fib (n: Integer) : Integer = ... declaration in the LangF
program. The $(Local(1), Local(2)) at line 6 indicates that the first and second local variables (corre-
sponding to one and two) should be saved (see Section 4) in order to be accessed as Global(0) and Global(1)

1You can save the RepLoc IR for a LangF program by executing the compiler with the command
./bin/langfc -Ckeep-convert-to-reploc=true file.lgf.

4

1 #(4)
2 let
3 val Local(0) = 0
4 val Local(1) = 1
5 val Local(2) = 2
6 fun $(Local(1), Local(2))
7 and Local(3) =
8 fib__000 #(2) =>
9 (case !Lte (Param, Global(0)) of

10 True@UnboxedTag(1) => Global(0)
11 | False@UnboxedTag(0) =>
12 let
13 val Local(0) = Self(fib__000) (!Sub (Param, Global(0)))
14 val Local(1) = Self(fib__000) (!Sub (Param, Global(1)))
15 in
16 !Add (Local(0), Local(1))
17 end
18 end)
19 in
20 Local(3) (!Add (10, Local(0)))
21 end

Figure 1: Sample RepLoc IR for Fibonacci program

within the body of the function. Line 7 indicates that the function will be accessed as Local(3) in the program
itself, while Line 8 indicates that the function will be accessed as Self(fib__000) within the body of the func-
tion and that the function has two local variables (corresponding to a and b). Lines 9–18 correspond to the body of
the function.

Note that the data constructors in the patterns at lines 10 and 11 have unboxed representations. The function
argument n is accessed as Param at lines 9, 13, and 15, while the free variables one and two are accessed as
Global(0) and Global(1) at lines 9, 10, 13, and 14. Lines 13 and 14 correspond to the val declarations of a
and b in the LangF program; note that the recursive use of the function name within the function body is accessed
as Self(fib__000).

Finally, line 20 corresponds to the fib (10 - zero) expression in the LangF program. Outside the body of
the fib is accessed as Local(3).

3 Virtual Machine

In this section, we describe the virtual machine (VM) to be targetted by the code generator. The virtual machine
is a stand-alone program that takes an object file and executes it. An object file consists of a sequence of bytecode
instructions, a literal table that contains string constants, and a C function table that contains the names of runtime-
system functions (that are used to implement services such as I/O).

3.1 Values

The VM supports four types of values: 31-bit tagged integers, 32-bit pointers to heap-allocated records of values or
heap-allocated strings, 32-bit pointers to stack positions, and 32-bit pointers to bytecode instructions.

v ::= i tagged integer
| p pointer to heap-allocated object
| spos pointer to stack position
| caddr pointer to bytecode instruction

5

An integer value i is represented by 2i+1 in the VM (hence, is represented by a 32-bit word); this tagging is required
to distinguish integers from pointers for the garbage collector. The VM takes care of tagging/untagging integers; the
only impact of this representation on the VM code generator is that integer constants must be in the range −230 to
230 − 1, a syntactic restriction that is enforced by the type checker.

We use 32-bit word addresses for pointers to heap-allocated objects and pointers to stack positions, but use 8-bit
byte address for pointers to bytecode instructions.

3.2 Configurations

The virtual machine can be described by the various components of internal state that are referenced and updated
as it executes. There are three components of immutable state (loaded from the object file) and six components of
mutable state. We collect these components together into a configuration:

VM ::= 〈LitTbl; CFunTbl; Code; ; Heap; Stack; SP; FP;EP; PC〉

The immutable state, loaded from the object file, is comprised of the literal table, the C function table, and the
sequence of bytecode instructions.

LitTbl ::= {n 7→ "string", · · · } literal table
CFunTbl ::= {n 7→ cfun, · · · } C function table

Code ::= instr0 · · ·instrn−1 sequence of bytecode instructions

The mutable state is comprised of a heap of heap-allocated objects (records of values and strings), a stack of values,
and four special registers. The stack pointer (SP) points to the top stack element (the stack grows towards lower
addresses, so pushing an element on the stack decreases the stack pointer while popping an element from the stack
increases the stack pointer). The frame pointer (FP) points to the base of the current stack-frame and is used to
access the function argument and local variables. The environment pointer (EP) points to the current environment
and is used to access global variables. The program counter (PC) points to the next bytecode instruction to execute.

Heap ::= {p 7→ HeapObj, . . .} heap of heap-allocated objects
HeapObj ::= 〈v0, . . . , vn−1〉 record of n values

| "string" string
Stack ::= v · · · v stack of values (rightmost value is the top stack element)

SP ::= spos stack pointer; always points to top stack element
FP ::= spos frame pointer
EP ::= p environment pointer
PC ::= caddr program counter

3.3 Instructions

We specify the semantics of instructions using the following notation:

〈H; · · ·
FP
↓ · · · vn · · ·

SP
↓ v0; SP; FP; EP;PC〉 ⇒ 〈H′; · · ·

FP′

↓ · · · v′m · · ·
SP′

↓ v′0; SP′; FP′; EP′; PC′〉
Code[PC] = instr

which means that the virtual machine transitions from one configuration to another when the (original) program
counter points to the instruction instr; the transition takes a stack with vn · · · v0 at the top and maps it to a stack
with v′m · · · v′0 at the top, leaves all other stack elements unchanged, and (possibly) changes the heap, the stack
pointer, the frame pointer, the environment pointer, and the program counter. We omit the immutable state, since

it never changes during the execution of the virtual machine. When necessary, we use the notation
SP
↓ and

FP
↓ to

indicate the elements in the stack to which the stack pointer and frame pointer are pointing (in the above, SP is
pointing to v0).

6

In the following, we increment (resp. decrement) the stack pointer by 1 when popping (resp. pushing) a single
value. Technically, since virtual machine values are 32-bit quantities, the increment (resp. decrement) should be by
4. Similarly, in the following, we increment the program counter by 1 when transfering control to the next instruction
in the sequence of bytecode instructions. Technically, since different bytecode instructions have different encoding
lengths, the increment should be by the length of the encoded bytecode instruction.

The instructions are organized by kind in the following description.

Arithmetic instructions

〈H; · · · i1 i2; SP; FP; EP;PC〉 ⇒ 〈H; · · · (i1 + i2); SP + 1; FP;EP; PC + 1〉 Code[PC] = add
Pops the top two stack elements (which must be integers), adds them, and pushes the result (modulo 230).

〈H; · · · i1 i2; SP; FP; EP;PC〉 ⇒ 〈H; · · · (i1 − i2); SP + 1; FP;EP; PC + 1〉 Code[PC] = sub
Pops the top two stack elements (which must be integers), subtracts them, and pushes the result (modulo 230).

〈H; · · · i1 i2; SP; FP; EP;PC〉 ⇒ 〈H; · · · (i1 × i2); SP + 1; FP;EP; PC + 1〉 Code[PC] = mul
Pops the top two stack elements (which must be integers), multiplies them, and pushes the result (modulo
230).

〈H; · · · i1 i2; SP; FP; EP;PC〉 ⇒ 〈H; · · · (i1/i2); SP + 1; FP;EP; PC + 1〉 Code[PC] = div
Pops the top two stack elements (which must be integers), divides them, and pushes the result (modulo 230).
The result is undefined if i2 equals 0.

〈H; · · · i1 i2; SP; FP; EP;PC〉 ⇒ 〈H; · · · (i1 mod i2); SP + 1; FP;EP; PC + 1〉 Code[PC] = mod
Pops the top two stack elements (which must be integers), divides them, and pushes the remainder (modulo
230). The result is undefined if i2 equals 0.

〈H; · · · i; SP; FP; EP;PC〉 ⇒ 〈H; · · · (−i); SP; FP; EP;PC + 1〉 Code[PC] = neg
Pops the top stack element (which must be an integer), negates it, and pushes the result (modulo 230).

〈H; · · · i1 i2; SP; FP; EP;PC〉 ⇒ 〈H; · · · (i1 = i2); SP + 1; FP;EP; PC + 1〉 Code[PC] = equ
Pops the top two stack elements (which must be integers), compares them, and pushes 1 if i1 equals i2 and
pushes 0 otherwise.

〈H; · · · i1 i2; SP; FP; EP;PC〉 ⇒ 〈H; · · · (i1 < i2); SP + 1; FP;EP; PC + 1〉 Code[PC] = less
Pops the top two stack elements (which must be integers), compares them, and pushes 1 if i1 is less than i2
andpushes 0 otherwise.

〈H; · · · i1 i2; SP; FP; EP;PC〉 ⇒ 〈H; · · · (i1 ≤ i2); SP + 1; FP;EP; PC + 1〉 Code[PC] = lesseq
Pops the top two stack elements (which must be integers), compares them, and pushes 1 if i1 is less than or
equal to i2 and pushes 0 otherwise.

〈H; · · · v; SP; FP; EP;PC〉 ⇒ 〈H; · · · (v = 0); SP; FP; EP; PC + 1〉 Code[PC] = not
Pops the top stack element, compares it to zero, and pushes the 1 if v equals 0 and pushes 0 otherwise.

Stack instructions

〈H; · · · ; SP; FP; EP;PC〉 ⇒ 〈H; · · · i; SP− 1; FP;EP; PC + 1〉 Code[PC] = int(i)
Pushes the integer i.

〈H; · · · ; SP; FP; EP;PC〉 ⇒ 〈H⊕ {p 7→ "stringn"}; · · · p; SP− 1; FP;EP; PC + 1〉
Code[PC] = literal(n), p /∈ dom(H), LitTbl [n] = "stringn"

Heap allocates a string, initialized from the nth string literal, and pushes a pointer to the newly allocated
object.

7

〈H; · · · ; SP; FP; EP;PC〉 ⇒ 〈H; · · · caddr ; SP− 1; FP;EP; PC + 1〉
Code[PC] = label(l), CAddrOf(l) = caddr

Pushes the code address named by the label l. Note that in the encoding of this instruction, the code address
is specified as an offset from the program counter (PC).

〈H; · · · v1 v0; SP; FP; EP;PC〉 ⇒ 〈H; · · · v0 v1; SP; FP; EP;PC + 1〉 Code[PC] = swap
Swaps the top two stack stack elements.

〈H; · · · vn vn−1 · · · v1 v0; SP; FP; EP;PC〉 ⇒ 〈H; · · · v0 vn−1 · · · v1 vn; SP; FP; EP;PC + 1〉
Code[PC] = swap(n)

Swaps the top stack element with the nth element from the top of the stack. Note, the swap instruction is
equivalent to swap(1), but with a shorter instruction encoding.

〈H; · · · v0; SP; FP; EP;PC〉 ⇒ 〈H; · · · v0 v0; SP− 1; FP;EP; PC + 1〉 Code[PC] = dup
Duplicates the top stack element.

〈H; · · · vn vn−1 · · · v1 v0; SP; FP; EP;PC〉 ⇒ 〈H; · · · vn vn−1 · · · v1 v0 vn; SP− 1; FP;EP; PC + 1〉
Code[PC] = push(n)

Pushes the nth element from the top of the stack. Note, the dup instruction is equivalent to push(0), but
with a shorter instruction encoding.

〈H; · · · v0; SP; FP; EP;PC〉 ⇒ 〈H; · · · ; SP + 1; FP;EP; PC + 1〉 Code[PC] = pop
Pops the top stack element.

〈H; · · · vn vn−1 · · · v1 v0; SP; FP; EP;PC〉 ⇒ 〈H; · · · ; SP + n; FP; EP; PC + 1〉 Code[PC] = pop(n)
Pops the top n stack elements. Note, the pop instruction is equivalent to pop(0), but with a shorter instruc-
tion encoding.

Heap instructions

〈H; · · · v0 · · · vn−1; SP; FP; EP;PC〉 ⇒ 〈H⊕ {p 7→ 〈v0, . . . , vn−1〉}; · · · p; SP + n− 1; FP;EP; PC + 1〉
Code[PC] = alloc(n), p /∈ dom(H)

Heap allocates a record of n elements, initialized from the top n stack elements, and pushes a pointer to the
newly allocated object.

〈H; · · · p; SP; FP; EP;PC〉 ⇒ 〈H; · · · v0 · · · vn−1; SP + 1− n; FP; EP; PC + 1〉
Code[PC] = explode, HP[p] = 〈v0, · · · , vn−1〉

Pops a pointer to a heap-allocated record and pushes the record elements.

〈H; · · · p; SP; FP; EP;PC〉 ⇒ 〈H; · · · vi; SP; FP; EP;PC + 1〉
Code[PC] = select(i), H[p] = 〈v0, · · · , vn−1〉

Pops a pointer to a heap-allocated record and pushes the ith record element. Hint: Use this instruction to
implement pattern matching on a data constructor with a TaggedBox representation.

〈H; · · · p i; SP; FP; EP;PC〉 ⇒ 〈H; · · · vi; SP + 1; FP;EP; PC + 1〉
Code[PC] = index, H[p] = 〈v0, · · · , vn−1〉

Pops an index i and a pointer to a heap-allocated record and pushes the ith record element. NOTE: This
instruction should not be needed to complete the project (with or without extra credit).

〈H; · · · p i v′i; SP; FP; EP;PC〉 ⇒ 〈H⊕ {p 7→ 〈v0, · · · , v′i, · · · , vn−1〉}; · · · ; SP + 3; FP;EP; PC + 1〉
Code[PC] = update, H[p] = 〈v0, · · · , vi, · · · vn−1〉

Pops a value, an index i, and a pointer to a heap-allocated record and updates the ith record element with the
value. NOTE: This instruction should not be needed to complete the project (with or without extra credit).

8

〈H; · · · v; SP; FP; EP;PC〉 ⇒ 〈H; · · · (v ∈ dom(H)); SP; FP; EP;PC + 1〉 Code[PC] = boxed
Pops a value and pushes 1 if the value is a pointer to a heap-allocated object and pushes 0 otherwise. Hint: Use
this instruction to implement pattern matching on a datatype type constructor with a mixed representation.

Environment-pointer instructions

〈H; · · · ; SP; FP; EP;PC〉 ⇒ 〈H; · · · EP; SP− 1; FP;EP; PC + 1〉 Code[PC] = pushep
Pushes the environment pointer (EP).

〈H; · · · v; SP; FP; EP;PC〉 ⇒ 〈H; · · · ; SP + 1; FP; v; PC + 1〉 Code[PC] = popep
Pops the top stack element and stores it in the environment pointer.

〈H; · · · ; SP; FP; EP;PC〉 ⇒ 〈H; · · · v; SP− 1; FP;EP; PC + 1〉
Code[PC] = loadglobal(i), H[EP] = 〈v0, · · · , vn−1〉

Interprets the environment pointer (EP) as a pointer to a heap-allocated record and pushes the ith record
element.

Frame-pointer instructions

〈H; · · · v2 v1
FP
↓ v0 v−1 v−2 · · · ; SP; FP; EP;PC〉 ⇒ 〈H; · · · v1

FP
↓ v0 v−1 · · · vi; SP− 1; FP;EP; PC + 1〉

Code[PC] = loadlocal(i)
Fetches the value at the word addressed by FP + i and pushes the value. Note that a function’s argument will
be at offset 2, the function’s return address will be at offset 0, and the local variables will start at offset −1.

〈H; · · · v2 v1
FP
↓ v0 v−1 v−2 · · · v′i; SP; FP; EP;PC〉 ⇒ 〈H; · · · vi+1 v

′
i vi−1 · · · ; SP + 1; FP;EP; PC + 1〉

Code[PC] = storelocal(i)
Pops a value and stores it at the word addressed by FP + i.

〈H; · · ·
SP
↓ v0; SP; FP; EP;PC〉 ⇒ 〈H; · · · v0

SP−1
↓ FP w0 · · · wn−1; SP− 1− n; SP− 1; EP;PC〉

Code[PC] = entry(n)
Pushes the frame pointer (FP), sets the frame pointer to the updated stack pointer (SP − 1, in terms of the
original stack pointer SP), and pushes n uninitialized values.

Control-flow instructions

〈H; · · · ; SP; FP; EP;PC〉 ⇒ 〈H; · · · ; SP; FP; EP; caddr〉 Code[PC] = jmp(l), CAddrOf(l) = caddr
Transfers control to the code address named by the label l. Note that in the encoding of this instruction, the
code address is specified as an offset from the program counter (PC)

〈H; · · · v; SP; FP; EP;PC〉 ⇒ 〈H; · · · ; SP + 1; FP;EP; caddr〉
Code[PC] = jmpif(l), v = 1, CAddrOf(l) = caddr

〈H; · · · v; SP; FP; EP;PC〉 ⇒ 〈H; · · · ; SP + 1; FP;EP; PC + 1〉 Code[PC] = jmpif(l), v 6= 1
Pops the top stack element, compares it to one, and transfers control to the code address named by the label l
if v equals 1 and transfers control to PC + 1 otherwise.

〈H; · · · va caddr ; SP; FP; EP;PC〉 ⇒ 〈H; · · · va (PC + 1); SP; FP; EP; caddr〉 Code[PC] = call
Pops the to-be-called function’s code address, pushes the address of the next instruction (PC+1), and transfers
control to the popped code address.

9

〈H; · · · va caddrret

FP
↓ sposfp · · · vr; SP; FP; EP;PC〉 ⇒ 〈H; · · · vr; FP + 2; sposfp ; EP; caddrret〉

Code[PC] = ret
Returns from a function. Pops the result (vr), sets the stack pointer to the frame pointer, pops the saved frame
pointer (sposfp) and sets the frame pointer to the saved frame pointer, pops the return code address (caddrret),
pops the function argument (va), pushes the result, and transfers control to the return code address.

〈H; · · · v caddrret

FP
↓ sposfp · · · va caddr ; SP; FP; EP;PC〉 ⇒ 〈H; · · · va caddrret ; FP + 1; sposfp ; EP; caddr〉

Code[PC] = tailcall
Tail calls a function. Pops the the to-be-called function’s code address (caddr) and the to-be-called function’s
argument (va), pops the current frame (like the ret instruction), stores the argument, and transfers control
to the popped code address. NOTE: This instruction should not be needed to complete the project, unless
undertaking the extra credit portion of Section 7.3.

Miscellaneous instructions

〈H; · · · v1 · · · vm; SP; FP; EP;PC〉 ⇒ 〈H′; · · · v; SP +m− 1; FP;EP; PC + 1〉
Code[PC] = ccall(n), CFunTbl [n] = cfunn, H; cfunn(v1, · · · , vm)⇒ H′; v

Calls the nth C function. The C function will pop its m arguments from the stack and push its result. The C
function may allocate in the heap and may perform I/O.

〈H; · · · ; SP; FP; EP;PC〉 ⇒ 〈H; · · · ; SP; FP; EP;PC + 1〉 Code[PC] = nop
Performs no operation other than incrementing the program counter.

〈H; · · · ; SP; FP; EP;PC〉 ⇒ 2 Code[PC] = halt
Halts the virtual machine.

3.4 Runtime functions

The virtual machine provides the ccall instruction to invoke C functions. C functions take their arguments from
the stack and return their result on the stack. The ccall instruction specifies the C function by an index into the C
function table.

The virtual machine provides the following runtime system functions.

H;"VM_Argc"(v)⇒ H; i
Ignores its argument and returns the number of arguments (including the name of the object file) passed to the
virtual machine.

H;"VM_Arg"(i)⇒ H⊕ {p 7→ "arg i"}; p p /∈ dom(H)
Heap allocates a string, initialized to the ith argument passed to the virtual machine, and returns a pointer to
the newly allocated object. The 0th argument is the name of the object file.

H;"VM_Print"(fid , p)⇒ H; 0 p ∈ dom(H), H[p] = "string"
Prints the string pointed to by p to the file specified by fid and return the Unit value (represented by the
tagged integer value 0). Use 0 for the standard output.

H;"VM_Size"(p)⇒ H;n p ∈ dom(H), H[p] = "string", |string | = n
Returns the size of the string pointed to by p.

H;"VM_Concat"(p1, p2)⇒ H⊕ {p 7→ "string1string2"}; p
p1 ∈ dom(H), H[p1] = "string1", p2 ∈ dom(H), H[p2] = "string2", p /∈ dom(H)

Heap allocates a string, initialized to the concatenation of the strings pointed to by p1 and p2, and returns a
pointer to the newly allocated object.

10

H;"VM_Sub"(p, i)⇒ H; c
p ∈ dom(H), H[p] = "string", string[i] = c

Returns the integer code of the character in the string pointed to by p at the index i.

If any of these functions encounters an error (e.g., index out of bounds), then the virtual machine halts (with an error
message).

4 Implementing Functions

LangF supports higher-order functions, which requires representing functions as heap-allocated objects. For exam-
ple, consider the function:

val add : Integer -> Integer -> Integer =
fn (x: Integer) => fn (y: Integer) =>
x + y

When applied to an integer argument i, the add function returns a function that will add the integer i to its argument.
The representation of the result of add must include the value of i. In general, the representation of a function will
include the free variables of the function stored in a heap-allocated record, called the function’s environment. In this
example, the environment of the function add has no elements and the environment of the function returned by add
has a single element (the value of the argument x). The representation of a function must also contain the address
of the function’s code. We could store this address in the environment record, but for reasons that we explain below,
we instead represent a function as a two-element record of its code address and a pointer to its environment. This
record is the closure representation of the function. Thus, the generated code for add might look something like the
following:

Label Instruction Comment
add: entry(0)

loadlocal(2) push argument variable x
alloc(1) allocate environment
label(f) push code address f
swap swap environment pointer and code pointer
alloc(2) allocate closure (code ptr, env. ptr)
ret return closure

f: entry(0)
loadglobal(0) push global variable x from environment
loadlocal(2) push argument variable y
add
ret return sum

Things are only a bit more complicated with mutually recursive functions. All functions in a group of mutually
recursive functions share the same common environment, which will include all of the free variables of all of the
functions (except the variables denoting the functions themselves). For example, consider the following pair of
mutually recursive functions:

fun f (a: Integer) : Integer = if a < 0 then 1 else g (a + x)
and g (b: Integer) : Integer = f(b * y + z)

In this case, the environment of f and g will have three values: x, y, and z.

11

4.1 Calling Convention

A RepLoc IR function application “e1 e2” is implemented using a four part protocol. (Remember, all LangF function
applications of the form Exp [Type] have been replaced by function applications of the form Exp Unit in the
conversion to the RepLoc IR.)

1. The caller pushes its own environment pointer (in order to restore it after the called function returns) using
the pushep instruction and then evaluates the function and argument expressions from left to right, leaving
the results on the stack. Then a swap instruction is used to move the function closure to the top of the
stack, which is then exploded into its code-pointer and environment-pointer components. The environment
pointer is loaded into the EP register using the popep instruction. Then the function is called using the call
instruction, which has the effect of pushing the address of the following instruction on the stack. This protocol
is realized by the following sequence of instructions:

Instruction Stack Comment
pushep · · · epcaller push caller’s environment pointer
evaluate e1 · · · epcaller 〈f , epcallee〉 evaluate function (to a ptr to a code-ptr/env-ptr record)
evaluate e2 · · · epcaller 〈f , epcallee〉 arg evaluate argument
swap · · · epcaller arg 〈f , epcallee〉 swap the closure and argument values
explode · · · epcaller arg f epcallee pop the closure and push the code ptr and env ptr
popep · · · epcaller arg f pop the callee’s environment pointer into EP
call · · · epcaller arg raddrcaller call the function

2. The first instruction in the function is an entry instruction, which pushes the caller’s frame pointer, sets the
new frame pointer to the top of the stack, and then allocates space for n local variables.

Instruction Stack Comment
· · · epcaller arg raddrcaller stack on function entry

entry(n) · · · epcaller arg raddrcaller

FP
↓ fpcaller w0 · · · wn−1 initialize callee’s stack frame

3. When the callee is finished and the return result is on the top of the stack, it executes a ret instruction, which
pops the result, deallocates the space for local variables, restores the caller’s frame pointer, pops the return
address and the function argument, pushes the result, and transfers control to the return address.

Instruction Stack Comment

· · · epcaller arg raddrcaller

FP
↓ fpcaller w0 · · · wn−1 res stack on function exit

ret · · · epcaller res return to caller

4. When control is returned to the address following the call instruction in the caller, a swap instruction is
used to move the caller’s environment pointer to the top of the stack and a popep instruction is used load it
into the EP register.

Instruction Stack Comment
· · · epcaller res stack on function return

swap · · · res epcaller swap the caller’s environment pointer and the function result
popep · · · res pop the caller’s environment pointer into EP

This protocol is general-purpose, but has some inefficiencies in certain specific cases. We discuss variations on
this protocol in Section 7.

12

4.2 Example

To illustrate the implementation of functions, consider the following LangF program:

val zero = 0
val one = 1
fun fact (n: Integer): Integer =

if n <= zero then one else n * (fact (n - one))
; fact 5

The fact function has two variables in its environment (zero and one), one argument (n), and no local variables.
The argument n will be located at offset 2 from the frame pointer, while zero and one will be located at offset 0
and offset 1 from the environment pointer. The program has three local variables (zero, one, and fact); zero
will be located at offset -1 from the frame pointer, one will be located at offset -2 from the frame pointer, fact
will be located at offset -3 from the frame pointer. One possible sequence of bytecode instructions for this program
is given in Figure 2.

5 Code Generation API

The code generation API is organized into three modules. The CodeStream: CODE_STREAM module imple-
ments code streams, which are an abstraction of the generated object file. The Label: LABEL module implements
labels for naming code addresses. The Instruction: INSTRUCTION module implements an abstract type of
virtual machine instructions.

5.1 Code Streams

The CodeStream: CODE_STREAM module provides a container to collect the instructions emitted by your code
generator. The CodeStream.new function creates an empty code stream. The CodeStream.emit function
saves an instruction at the end of the code stream. The CodeStream.string and CodeStream.c_function
functions registers string literals and C functions and returns the corresponding index to be used with the literal
and ccall instructions.

5.2 Labels

The Label: LABEL module provides an abstract type of label that is used to represent code locations. The
CodeStream.defineLabel function associates a label with the current position in the code stream. The
control-flow instructions take a label as an argument and there is an instruction for pushing the value of a label
onto the stack, which is required to create closures.

5.3 Instructions

The Instruction: INSTRUCTION module provides an abstract type that represents virtual machine bytecode
instructions. For those instructions that take arguments, the module provides constructor functions and for those
instructions without arguments, the module provides abstract values.

6 Requirements

You should implement a virtual machine code generator for LangF. Your implementation should include (at least)
the following module:

structure VMCodeGenerator : VMCODE_GENERATOR

13

Label Instruction Comment
_main: entry(3) initialize stack frame with 3 local variables

int(0)
storelocal(−1) store local variable zero
int(1)
storelocal(−2) store local variable one
loadlocal(−1) load local variable zero
loadlocal(−2) load local variable one
alloc(2) allocate fact’s environment
label(fact)
swap
alloc(2) allocate fact’s closure
storelocal(−3) store local variable fact
nop begin function call fact 5
pushep push _main’s env ptr
loadlocal(−3) evaluate function; load local variable fact
int(5) evaluate argument
swap swap the closure and argument values
explode
popep set EP to callee’s environment
call
swap swap _main’s env ptr and result
popep restore EP to _main’s env ptr
halt

fact: entry(0) initialize stack frame with 0 local variables
loadlocal(2) load function parameter n
loadglobal(0) load environment variable zero
lesseq compute n <= zero
jmpif(L1)
loadlocal(2) load function parameter n
nop begin function call fact (n - 1)
pushep
label(fact) evaluate function; load self variable fact
pushep evaluate function; load env ptr for self variable fact
alloc(2) evaluate function; allocate self variable fact’s closure
loadlocal(2) evaluate argument; load function parameter n
loadglobal(1) evaluate argument; load environment variable one
sub evaluate argument; compute n - one
swap swap the closure and argument values
explode
popep set EP to callee’s environment
call
swap swap fact’s env ptr and result
popep restore EP to fact’s env ptr
mul compute n * (fact (n - one))
jmp(L2)

L1: loadglobal(1) load environment variable one
L2: ret

Figure 2: Sample VM code for factorial program

14

The VMCODE_GENERATOR signature is as follows:

signature VMCODE_GENERATOR =
sig

val codeGen : ErrorStream.t *
RepLocIR.Prog.t ->
CodeStream.t

end

The structure RepLocIR : REPLOC_IR and structure CodeStream : CODE_STREAM
modules are provided in the seed code; the REPLOC_IR signature implementation is at
langfc-src/reploc-ir/reploc-ir.sig; the RepLocIR structure implementation is at
langfc-src/reploc-ir/reploc-ir.sml; the CODE_STREAM signature implementation is at
langfc-src/code-stream/code-stream.sig; and the CodeStream structure implementation is
at langfc-src/code-stream/code-stream.sml.

Note that your implementation of VMCodeGenerator.codeGen should call CodeStream.new to cre-
ate a code stream in which to emit instructions and return this code stream. Your implementation should not
call CodeStream.finish — writing the code stream to an object file is handled by the top-level driver
(langfc-src/driver/main.sml).

6.1 Errors

None! A program which has been verified by the front-end (scanner, parser, and type checker) should compile and
generate an object file without errors.

7 Extra Credit (10pts)

As noted throughout this document, various choices, conventions, and protocols are general-purpose, but have some
inefficiencies in certain specific cases. For extra credit, you may attempt to address some of these inefficienies.
If you do so, please modify the cnetid-proj/project4/README file to list which improvements you have
undertaken and a few sentences about how you addressed the inefficiencies. It should be clear from reading the
following sections that these are only a small number of the possible improvements one can make. Take CMSC22620
to learn more!!

Note: Make sure that you have a completely working virtual machine code generator before undertaking these
improvments.

7.1 Improve Data Representations: DaCon Representations (2pts)

The data representation for data constructors given in Section 2.3 (and used by the
RepLocIRConverter: REPLOC_IR_CONVERTER module provided in the project seed code) assigns a
unique tag to every data constructor. However, some data constructors do not need a tag. Consider the Pair data
constructor; it is the one and only data constructor for the Pair type constructor. Any pattern match on a value
of Pair type must match the Pair data constructor, so there is no need to check the tag. Similarly, consider the
Nil and Cons data constructors. Any pattern match on an unboxed value of List type must match the Nil data
constructor while any pattern match on a boxed value of List type must match the Cons data constructor; again,
there is no need to check the tag.

Consider a datatype type constructor tyconid with the following dacon declarations:

daconid0 | · · · | daconidn−1

| daconid′0 { Type0,0 , . . . , Type0,k0
} | · · · | daconid′m−1 { Typem−1,0 , . . . , Typem−1,km−1

}

15

where we have separated the n nullary data constructors (daconid0, · · · , daconidn−1) from the m non-nullary data
constructors (daconid′0, · · · , daconid′m−1). The following table gives a more efficient representation for the data con-
structors and the type constructor, based on the number of nullary and non-nullary data constructors, the number of
arguments to non-nullary data constructors, and the representation of the arguments to non-nullary data constructors.

n m daconi dacon′
j {v0, . . . , vkj

} tycon
> 0 0 i UnboxedTag i n.a. n.a. unboxed
0 1 n.a. n.a. if k0 = 1 v0 Transparent Type0,0’s representation
0 1 n.a. n.a. if k0 > 1 〈v0, · · · , vkj

〉 Boxed boxed
> 0 1 i UnboxedTag i if k0 = 1 and Type0,0 boxed v0 Transparent mixed
> 0 1 i UnboxedTag i if k0 > 1 or Type0,0 not boxed 〈v0, · · · , vkj 〉 Boxed mixed
≥ 0 > 1 i UnboxedTag i 〈j, v0, · · · , vkj

〉 TaggedBox j mixed

Applying this convention to the datatypes from Section 2.3 results in the following representations:

Type constructor Representation Data constructor Representation DaConRep
Unit unboxed Unit 0 Tagged 0
Bool unboxed False 0 Tagged 0

True 1 Tagged 1
Option mixed None 0 Tagged 0

Some {v} 〈v〉 Boxed
List mixed Nil 0 Tagged 0

Cons {vh,vt} 〈vh, vt〉 Boxed
Pair boxed Pair {va,vb} 〈va, vb〉 Boxed

7.2 Improve Calling Convention: Self Application (2pts)

The calling convention for a function application given in Section 4.1 always evaluates the function expression to
a closure (a pointer to a record of a code-pointer and an environment-pointer). However, if the function expression
is a variable accessed as Self(f) (i.e., it is a recursive call of the function or a call of another function in the same
mutually-recursive group), then we already know that the code-pointer will be the code address of the label f and
the environment pointer will be the same as the environment pointer of the caller function (hence, already in the EP
register). Furthermore, there is no need to save and restore the EP register of the caller function.

Figure 3 gives an improved sequence of bytecode instructions for the fact function from Figure 2.

7.3 Improve Calling Convention: Tail Calls (2pts)

If a function application appears in tail position (i.e., as the last action a function performs before returning), then,
according to the calling convention of Section 4.1, the generated code will always look like the following:

Label Instruction Comment
pushep save caller’s env ptr
...
call
swap swap caller’s env ptr and result
popep restore EP to caller’s env ptr
ret

(with some minor variations if the calling-convention improvement of Section 7.2 has been adopted). Note that the
caller function never accesses its parameter or its local variables after the callee function returns; hence, the caller’s
stack frame wastes space during the execution of the call. The virtual machine has a special tailcall instruction
that discards the caller’s stack frame and does not push a return address.

16

Label Instruction Comment
fact: entry(0) initialize stack frame with 0 local variables

loadlocal(2) load function parameter n
loadglobal(0) load environment variable zero
lesseq compute n <= zero
jmpif(L1)
loadlocal(2) load function parameter n
nop begin function call fact (n - 1)
loadlocal(2) evaluate argument; load function parameter n
loadglobal(1) evaluate argument; load environment variable one
sub evaluate argument; compute n - one
label(fact) evaluate function; load self variable fact
call
mul compute n * (fact (n - one))
jmp(L2)

L1: loadglobal(1) load environment variable one
L2: ret

Figure 3: Improved VM code for factorial program

Tail calls should be used to implement looping in functional languages like LangF. For example, consider the
mutually-recursive even/odd functions:

1 fun even (x:Integer) : Bool =
2 case x < 0 of
3 True => even (~x)
4 | False => case x == 0 of
5 True => True
6 | False => odd (x - 1)
7 end
8 end
9 and odd (x:Integer) : Bool =

10 case x < 0 of
11 True => odd (~x)
12 | False => case x == 0 of
13 True => False
14 | False => even (x - one)
15 end
16 end

Note that there are a tail calls at lines 3, 6, 11, and 14.

7.4 Improve Calling Convention: Caller Env Ptr (2pts)

The calling convention for a function application given in Section 4.1 always saves and restores the EP register
of the caller function. However, the environment pointer of a function never changes during the execution of the
function. Therefore it can be more efficient to save the EP register once into the caller function’s stack frame, and
then restore it from the stack frame. We can adapt the general-purpose protocol from Section 4.1 to reflect this more
efficient protocol:

1. The caller does not push its own environment pointer; the rest of the first part of the protocol remains the
same.

17

Instruction Stack Comment
evaluate e1 · · · 〈f , epcallee〉 evaluate function (to a ptr to a code-ptr/env-ptr record)
evaluate e2 · · · 〈f , epcallee〉 arg evaluate argument
swap · · · arg 〈f , epcallee〉 swap the closure and argument values
explode · · · arg f epcallee pop the closure and push the code ptr and env ptr
popep · · · arg f pop the callee’s environment pointer into EP
call · · · arg raddrcaller call the function

2. The first instruction in the function is an entry instruction, which pushes the caller’s frame pointer, sets the
new frame pointer to the top of the stack, and then allocates space for the function’s environment pointer and n
local variables. The function’s environment pointer is saved to FP−1. Note that the function’s local variables
will now start at offset −2 from the FP register.

Instruction Stack Comment
· · · arg raddrcaller stack on function entry

entry(n+ 1) · · · arg raddrcaller

FP
↓ fpcaller w w0 · · · wn−1 initialize callee’s stack frame

pushep · · · arg raddrcaller

FP
↓ fpcaller w w0 · · · wn−1 epcallee

push callee’s environment pointer

storelocal(−1) · · · arg raddrcaller

FP
↓ fpcaller epcallee w0 · · · wn−1

save callee’s environment pointer to FP− 1

3. The third part of the protocol remains the same.

Instruction Stack Comment

· · · arg raddrcaller

FP
↓ fpcaller epcallee w0 · · · wn−1 res stack on function exit

ret · · · res return to caller

4. When control is returned to the address following the call instruction in the caller, a loadlocal(−1)
instruction is used to move the caller’s environment pointer to the top of the stack and a popep instruction is
used load it into the EP register.

Instruction Stack Comment
· · · res stack on function return

loadlocal(−1) · · · res fetch the caller’s environment pointer
popep · · · res pop the caller’s environment pointer into EP

Note that this revised protocol removes one instruction from the first part and adds two instructions to the second
part. However, the second part appears in the code stream once per function declaration, while the first part appears
in the code stream once per function application. Hence, there is a net savings in code size if one applies this revised
protocol to functions with bodies that include at least two function applications. There is also a savings in stack usage
for nested function applications. Consider the expression f (g (h z)). Using the original calling-convention
protocol, there will be three copies of the caller’s environment pointer on the stack when calling h. Using this revised
calling-convention protocol, there will be only one copy of the caller’s environment pointer on the stack.

Although this revised calling-convention protocol reduces code size for functions with bodies that include at
least two function applications, if the function only makes self applications or tail calls, then there is never a need to
restore the function’s environment pointer after a call (assuming the improved calling convention for self applications
described in Section 7.2 and the improved calling convention for tail calls described in Section 7.3) and, hence, never
a need to save it in the first place. For such functions, it is better to stick with the original calling-convention protocol.

Even for a function with a body that includes at least two function applications (that are neither self applications
or tail calls), there may be control-flow paths on which there are no function applications. Consider the following
LangF function:

18

fun foo (x: Integer) : Integer =
case x < 0 of

True => 0
| False => let

val a = f x
val b = g (x + a)
val c = h (a * b)

in
a + b + c

end
end

If foo is applied to a negative number, then it wasn’t necessary to save the environment pointer at the beginning of
the function. It would be more efficient (in terms of the number of virtual machine instructions executed) to only
save the environment pointer in the stack frame when taking the False branch. On the other hand, consider the
following LangF function:

datatype T = A | B {Integer, Integer}
fun foo (x: T) : Integer =

case T of
A => 0

| B {y, z} => let
val a = if y < 0 then 0 else f z
val b = if z < 0 then 0 else g y
val c = if y == z then 1 else h (a * b)

in
a + b + c

end
end

For this function, when should the environment pointer be saved to the stack frame? to minimize code size? to
minimize instructions executed?

Finally, if a function has an empty environment (i.e.,, it has no variables accessed as Global), then its environ-
ment pointer is never needed and there is no need to save and/or restore the environment pointer, regardless of the
number or kinds of applications in the body of the function.

7.5 Improve Variable Locations: Reuse Local Variables (2pts)

The algorithm for deciding variable locations used by the RepLocIRConverter: REPLOC_IR_CONVERTER
module provided in the project seed code chooses a local variable slot for any variable bound within the body of
a function and reserves that local variable slot for the entire lexical scope of the variable. Thus, a variable may
consume a local variable slot even though it will never be used again. This is inefficient, because it unnecessarily
increases the size of the function’s stack frame.

For example, consider the following LangF function:

19

fun foo (x: Integer) : Integer =
case x < 0 of

True => let
val a = g x x
val b = g a a
val c = g b b
val d = g c c
val e = g d d

in
e + x

end
| False => let

val n = h x x
val o = h n n
val p = h o o
val q = h p p
val r = h q q

in
r + x

end
end

The RepLoc IR function (as produced by the Core IR to RepLoc IR conversion implemented in the project seed
code) for this LangF function is as follows:

fun $(Local(0), Local(1))
and Local(2) =

foo__004 #(5) =>
(case !Lt (Param, 0) of

True@UnboxedTag(1) =>
let

val Local(0) = (Global(0) Param) Param
val Local(1) = (Global(0) Local(0)) Local(0)
val Local(2) = (Global(0) Local(1)) Local(1)
val Local(3) = (Global(0) Local(2)) Local(2)
val Local(4) = (Global(0) Local(3)) Local(3)

in
!Add (Local(4), Param)

end
| False@UnboxedTag(0) =>

let
val Local(0) = (Global(1) Param) Param
val Local(1) = (Global(1) Local(0)) Local(0)
val Local(2) = (Global(1) Local(1)) Local(1)
val Local(3) = (Global(1) Local(2)) Local(2)
val Local(4) = (Global(1) Local(3)) Local(3)

in
!Add (Local(4), Param)

end
end)

This RepLoc IR function has five local variables. Note that the RepLoc IR function uses the same local variables
in the True match rule and the False match rule. On the other hand, note that the RepLoc IR function does not
reuse local variables within a match rule.

Since each val bound variable is only used to compute the next val bound variable or the function result, a
single local variable would suffice. That is, the LangF function above could be converted to the following RepLoc IR

20

function:

fun $(Local(0), Local(1))
and Local(2) =

foo__004 #(1) =>
(case !Lt (Param, 0) of

True@UnboxedTag(1) =>
let

val Local(0) = (Global(0) Param) Param
val Local(0) = (Global(0) Local(0)) Local(0)
val Local(0) = (Global(0) Local(0)) Local(0)
val Local(0) = (Global(0) Local(0)) Local(0)
val Local(0) = (Global(0) Local(0)) Local(0)

in
!Add (Local(0), Param)

end
| False@UnboxedTag(0) =>

let
val Local(0) = (Global(1) Param) Param
val Local(0) = (Global(1) Local(0)) Local(0)
val Local(0) = (Global(1) Local(0)) Local(0)
val Local(0) = (Global(1) Local(0)) Local(0)
val Local(0) = (Global(1) Local(0)) Local(0)

in
!Add (Local(0), Param)

end
end)

(Note that local variables in a RepLoc IR function are like variables in C — they can be assigned to more than once.)
If a variable bound in the body of a function is not free in an sub-expression in the body of the function, then

it would appear that the local variable slot reserved for the bound variable may be reused in the sub-expression.
However, consider the following LangF function:

fun foo (x: Integer) : Integer =
let

val a = g x x
in

(let val b = h x x in g b b end)
+ (h a a)

end

Although a is not free in the sub-expression let val b = h x x in g b b end, b cannot reuse the local
variable slot reserved for a. If b were to use the same local variable slot as a, then the evaluation of h a a would
actually apply h to b’s value.

8 GForge and Submission

Sources for Project 4 have been (or will shortly be) committed to your repository in the project4 sub-directory.
You will need to update your local copy, by running the command:

svn update

from the cnetid-proj directory.

21

We will collect projects from the SVN repositories at 10pm on Friday, March 20; make sure that you have
committed your final version before then. To do so, run the command:

svn commit

from the cnetid-proj directory.

9 Hints

• Start early!

• Study the interfaces. You will need to be familiar with the types and operations in the REPLOC_IR,
CODE_STREAM, INSTRUCTION, and LABEL signatures.

• Avoid the temptation of premature optimization. That is, first implement a very simple code generator. Such
a code generator might unecessarily push and pop some values, compute values in the “wrong” order (for
example, in Figure 2 there is a swap before the allocation of fact’s closure that could be avoided by putting
the label(fact) instruction before loading values for and allocating the environment), or jump more often
than necessary (again, in Figure 2 the jmp(L2) instruction could be replaced by a ret instruction).

• To complete the assignment, you should only need to make changes to the
cnetid-proj/project4/langfc-src/vmcode-generator/vmcode-generator.sml
file. If you undertake the extra credit portions dealing with data representations (Section 7.1) and
variable locations (Section 7.5), then you should only additionally need to make changes to the
cnetid-proj/project4/langfc-src/reploc-ir/convert.sml file.

• Executing the compiler (from the cnetid-proj/project4 directory) with the command

./bin/langfc file.lgf

will produce a file.bin file that can be interpreted by the virtual machine. Executing the virtual machine
(from the cnetid-proj/project4 directory) with the command

./bin/vm file.bin arg1 · · · argn

will execute the program.

• Executing the compiler (from the cnetid-proj/project4 directory) with the command

./bin/langfc -Cinterpret-core=true -Cargs-interpret-core=arg1,· · ·,argn file.lgf

will interpret the Core IR representation of the program during the compilation. Use this control to check the
expected behavior of a LangF program.

• Executing the compiler (from the cnetid-proj/project4 directory) with the command

./bin/langfc -Ckeep-convert-to-reploc=true -Ckeep-vmcode-generate=true file.lgf

will produce a file.convert-to-reploc.reploc file that contains the Representation&Location
intermediate representation (RepLoc IR) of the program (the input to the vm code generator) and a
file.vmcode-generate.vmcode file that contains a (readable) text version of the object file returned
by the code generator. Use these controls and their outputs to check that your code generartor is working as
expected.

Document history

March 1, 2009 Original version

22

