
SML/NJ Language Processing Tools:
User Guide

Aaron Turon
adrassi@gmail.com

May 2008 — 110.68 release

ii

Copyright c©2007. Fellowship of SML/NJ. All rights reserved.

This document was written with support from NSF grant CNS-0454136, “CRI: Standard
ML Software Infrastructure.”

Contents

1 Overview 1

2 ML-ULex 3
2.1 Specification format . 4
2.2 Directives . 4

2.2.1 The %arg directive . 4
2.2.2 The %defs directive . 6
2.2.3 The %let directive . 6
2.2.4 The %name directive . 6
2.2.5 The %states directive . 6

2.3 Rules . 7
2.3.1 Regular expression syntax . 7
2.3.2 EOF rules . 8
2.3.3 Actions . 8

2.4 Using the generated code . 9
2.5 ml-lex compatibility . 10

3 ML-Antlr 11
3.1 Background definitions . 12
3.2 Specification format . 12
3.3 Directives . 14

3.3.1 The %defs directive . 14
3.3.2 The %entry directive . 14
3.3.3 The %import directive . 15
3.3.4 The %keywords directive . 15
3.3.5 The %name directive . 15
3.3.6 The %refcell directive . 16
3.3.7 The %start directive . 16
3.3.8 The %tokens directive . 16

3.4 Nonterminal definitions . 17
3.4.1 Extended BNF constructions . 17
3.4.2 Inherited attributes . 17
3.4.3 Selective backtracking . 18
3.4.4 Semantic predicates . 18

iii

iv CONTENTS

3.4.5 Actions . 19
3.5 The LL(k) restriction . 20
3.6 Position tracking . 22
3.7 Using the generated code . 22

4 The ml-lpt-lib library 25
4.1 The AntlrStreamPos structure . 25
4.2 The AntlrRepair structure . 26

5 A complete example 27

Chapter 1

Overview

In software, language recognition is ubiquitous: nearly every program deals at some
level with structured input given in textual form. The simplest recognition problems
can be solved directly, but as the complexity of the language grows, recognition and
processing become more difficult.

Although sophisticated language processing is sometimes done by hand, the use
of scanner and parser generators1 is more common. The Unix tools lex and yacc are
the archetypical examples of such generators. Tradition has it that when a new pro-
gramming language is introduced, new scanner and parser generators are written in
that language, and generate code for that language. Traditional also has it that the new
tools are modeled after the old lex and yacc tools, both in terms of the algorithms used,
and often the syntax as well. The language Standard ML is no exception: ml-lex and
ml-yacc are the SML incarnations of the old Unix tools.

This manual describes two new tools, ml-ulex and ml-antlr, that follow tradition
in separating scanning from parsing, but break from tradition in their implementation:
ml-ulex is based on regular expression derivatives rather than subset-construction, and
ml-antlr is based on LL(k) parsing rather than LALR(1) parsing.

Motivation

Most parser generators use some variation on LR parsing, a form of bottom-up parsing
that tracks possible interpretations (reductions) of an input phrase until only a single
reduction is possible. While this is a powerful technique, it has the following downsides:

• Compared to predictive parsing, it is more complicated and difficult to under-
stand. This is particularly troublesome when debugging an LR-ambiguous gram-
mar.

• Because reductions take place as late as possible, the choice of reduction cannot

1“Scanner generator” and “parser generator” will often be shortened to “scanner” and “parser” respec-
tively. This is justified by viewing a parser generator as a parameterized parser.

1

2 CHAPTER 1. OVERVIEW

depend on any semantic information; such information would only become avail-
able after the choice was made.

• Similarly, information flow in the parser is strictly bottom-up. For (syntactic or se-
mantic) context to influence a semantic action, higher-order programming is nec-
essary.

The main alternative to LR parsing is the top-down, LL approach, which is commonly
used for hand-coded parsers. An LL parser, when faced with a decision point in the
grammar, utilizes lookahead to unambiguously predict the correct interpretation of the
input. As a result, LL parsers do not suffer from the problems above. LL parsers have
been considered impractical because the size of their prediction table is exponential in k
— the number of tokens to look ahead — and many languages need k > 1. However,
Parr showed that an approximate form of lookahead, using tables linear in k, is usually
sufficient.

To date, the only mature LL parser based on Parr’s technique is his own parser,
antlr. While antlr is sophisticated and robust, it is designed for and best used within
imperative languages. The primary motivation for the tools this manual describes is
to bring practical LL parsing to a functional language. Our hope with ml-ulex and
ml-antlr is to modernize and improve the Standard ML language processing infras-
tructure, while demonstrating the effectiveness of regular expression derivatives and
LL(k) parsing. The tools are more powerful than their predecessors, and they raise the
level of discourse in language processing.

Chapter 2

ML-ULex

Lexers analyze the lexical structure of an input string, and are usually specified using
regular expressions. ML-ULEX is a lexer generator for Standard ML. The module it gen-
erates will contain a type strm and a function

val lex : strm -> lex_result * AntlrStreamPos.span * strm

where lex result is a type that must be defined by the user of ml-ulex. Note that the
lexer always returns a token: we assume that end-of-file will be explicitly represented
by a token. Compared to ML-Lex, ml-ulex offers the following improvements:

• Unicode is supported under the UTF8 encoding.

• Intersection and negation of REs are supported.

• Token position spans are automatically generated.

• The specification format is somewhat cleaner.

• The code base is much cleaner, and supports multiple back-ends, including DFA
graph visualization and interactive testing of rules.

The tool is invoked from the command-line as follows:

ml-ulex [options] file

where file is the name of the input ml-ulex specification, and where options may be
any combination of:

3

4 CHAPTER 2. ML-ULEX

--dot generate DOT output (for graphviz; see
http://www.graphviz.org). The produced file will
be named file.dot, where file is the input file.

--match enter interactive matching mode. This will allow interac-
tive testing of the machine; presently, only the INITIAL
start state is available for testing (see Section 2.2.5 for de-
tails on start states).

--ml-lex-mode operate in ml-lex compatibility mode. See Section 2.5 for
details.

--table-based generate a table-based lexer.

--fn-based generate a lexer that represents states as functions and
transitions as tail calls.

--minimize generate a minimal machine. Note that this is slow, and
is almost never necessary.

The output file will be called file.sml.

2.1 Specification format

A ml-ulex specification is a list of semicolon-terminated declarations. Each declaration
is either a directive or a rule. Directives are used to alter global specification properties
(such as the name of the module that will be generated) or to define named regular
expressions. Rules specify the actual reguluar expressions to be matched. The grammar
is given in Figure 2.1.

There are a few lexical details of the specification format worth mentioning. First,
SML-style comments ((* ... *)) are treated as ignored whitespace anywhere they oc-
cur in the specification, except in segments of code. The ID symbol used in the grammar
stands for alpha-numeric-underscore identifiers, starting with an alpha character. The
code symbol represents a segment of SML code, enclosed in parentheses. Extra paren-
theses occuring within strings or comments in code need not be balanced.

A complete example specification appears in Chapter 5.

2.2 Directives

2.2.1 The %arg directive

Specifies an additional curried parameter, appearing after the sourcemap parameter,
that will be passed into the lex function and made available to all lexer actions.

2.2. DIRECTIVES 5

spec ::= (declaration ;)∗

declaration ::= directive
| rule

directive ::= %arg code
| %defs code
| %let ID = re
| %name ID
| %states ID+

code ::= (. . .)
rule ::= (< ID (, ID)∗ >)? re => code

| (< ID (, ID)∗ >)? <<EOF>> => code
re ::= CHAR

| " SCHAR∗ "
| (re)
| [(- | ^)? (CCHAR - CCHAR | CCHAR)+ -?]

a character class
| { ID } %let-bound RE
| . wildcard (any single character including \n)
| re * Kleene-closure (0 or more)
| re ? optional (0 or 1)
| re + positive-closure (1 or more)
| re { NUM } exactly NUM repetitions
| re { NUM1, NUM2 } between NUM1 and NUM2 repetitions
| re re concatenation
| ∼ re negation
| re & re intersection
| re | re union

CHAR ::= any printable character not one of ^ < > \ () { } [& | * ?
+ " . ; = ∼

| an SML or Unicode escape code
CCHAR ::= any printable character not one of ^ -] \

| an SML or Unicode escape code
SCHAR ::= any printable character not one of " \

| an SML or Unicode escape code
NUM ::= one or more digits

Figure 2.1: The ml-ulex grammar

6 CHAPTER 2. ML-ULEX

2.2.2 The %defs directive

The %defs directive is used to include a segment of code in the generated lexer module,
as in the following example:

%defs (
type lex_result = CalcParserToks.token
fun eof() = CalcParserToks.EOF
fun helperFn x = (* ... *)

)

The definitions must at least fulfill the following signature:

type lex_result
val eof : unit -> lex_result

unless EOF rules are specified, in which case only the lex result type is needed (see
Section 2.3.2). All semantic actions must yield values of type lex result. The eof func-
tion is called by ml-ulex when the end of file is reached – it acts as the semantic action
for the empty input string. All definitions given will be in scope for the rule actions (see
Section 2.3).

2.2.3 The %let directive

Use %let to define named abbreviations for regular expressions; once bound, an abbre-
viation can be used in further %let-bindings or in rules. For example,

%let digit = [0-9];

introduces an abbreviation for a regular expression matching a single digit. To use ab-
breviations, enclose their name in curly braces. For example, an additional %let defini-
tion can be given in terms of digit,

%let int = {digit}+;

which matches arbitrary-length integers. Note that scoping of let-bindings follows stan-
dard SML rules, so that the definition of int must appear after the definition of digit.

2.2.4 The %name directive

The name to use for the generated lexer module is specified using %name.

2.2.5 The %states directive

It is often helpful for a lexer to have multiple start states, which influence the regular
expressions that the lexer will match. For instance, after seeing a double-quote, the
lexer might switch into a STRING start state, which contains only the rules necessary for
matching strings, and which returns to the standard start state after the closing quote.

2.3. RULES 7

J.K = Σ
Jre1 re2K = Jre1K · Jre2K

J∼ reK =

(
∞⋃

i=0

Σi

)
\ JreK

Jre1 & re2K = Jre1K∩ Jre2K
Jre1 | re2K = Jre1K∪ Jre2K

Jre ?K = JreK∪ {ε}

Jre *K =
∞⋃

i=0

JreKi

Jre +K =
∞⋃

i=1

JreKi

Jre {n}K = JreKn

Jre {n, m}K =
m⋃

i=n

JreKi

Figure 2.2: Semantics for regular expressions

Start states are introduced via %states, and are named using standard identifiers.
There is always an implicit, default start state called INITIAL. Within a rule action, the
function YYBEGIN can be applied to the name of a start state to switch the lexer into that
state; see 2.3.3 for details on rule actions.

2.3 Rules

In general, when lex is applied to an input stream, it will attempt to match a prefix of
the input with a regular expression given in one of the rules. When a rule is matched, its
action (associated code) is evaluated and the result is returned. Hence, all actions must
belong to the same type.Rules are specified by an optional list of start states, a regular
expression, and the action code. The rule is said to “belong” to the start states it lists. If
no start states are specified, the rule belongs to all defined start states.

Rule matching is determined by three factors: start state, match length, and rule
order. A rule is only considered for matching if it belongs to the lexer’s current start
state. If multiple rules match an input prefix, the rule matching the longest prefix is
selected. In the case of a tie, the rule appearing first in the specification is selected.

For example, suppose the start state FOO is defined, and the following rules appear,
with no other rules belonging to FOO:

<FOO> a+ => (Tokens.as);
<FOO> a+b+ => (Tokens.asbs);
<FOO> a+bb* => (Tokens.asbs);

If the current start state is not FOO, none of the rules will be considered. Otherwise, on
input “aabbbc” all three rules are possible matches. The first rule is discarded, since the
others match a longer prefix. The second rule is then selected, because it matches the
same prefix as the third rule, but appears earlier in the specification.

2.3.1 Regular expression syntax

The syntax of regular expressions is given in Figure 2.1; constructs are listed in prece-
dence order, from most tightly-binding to least. Escape codes are the same as in SML,

8 CHAPTER 2. ML-ULEX

but also include \uxxxx and \Uxxxxxxxx, where xxxx represents a hexidecimal number
which in turn represents a Unicode symbol. The specification format itself freely accepts
Unicode characters, and they may be used within a quoted string, or by themselves.

The semantics for ml-ulex regular expressions are shown in Figure 2.2; they are
standard. Some examples:

0|1|2|3 denotes {0, 1, 2, 3}
[0123] denotes {0, 1, 2, 3}
0123 denotes {0123}
0∗ denotes {ε, 0, 00, . . . }
00∗ denotes {0, 00, . . . }
0+ denotes {0, 00, . . . }

[0− 9]{3} denotes {000, 001, 002, . . . , 999}
0 ∗&(..)∗ denotes {ε, 00, 0000, . . . }
^(abc) denotes Σ∗ \ {abc}
[^abc] denotes Σ \ {a, b, c}

2.3.2 EOF rules

It is sometimes useful for the behavior of a lexer when it reaches the end-of-file to change
depending on the current start state. Normally, there is a single user-defined eof func-
tion that defines EOF behavior, but EOF rules can be used to be more selective, as in the
following example:

<INITIAL> <<EOF>> => (Tok.EOF);
<COMMENT> <<EOF>> => (print "Error: unclosed comment";

Tok.EOF);

Other than the special <<EOF>> symbol, EOF rules work exactly like normal rules.

2.3.3 Actions

Actions are arbitrary SML code enclosed in parentheses. The following names are in
scope:

2.4. USING THE GENERATED CODE 9

YYBEGIN a function taking a start state and returning unit; changes to
that start state.

yysetStrm a function taking a ULexBuffer.stream and returning unit;
changes the current input source. The functions yystreamify,
yystreamifyInstream and yystreamifyReader can be used
to construct the stream; they work identically to the corre-
sponding functions described in Section 2.4

yytext the matched text as a string.
yysubstr the matched text as a substring (avoids copying).
yyunicode the matched Unicode text as a list of Word.word values

continue a unit to lex result function which recursively calls the lexer
on the input following the matched prefix, and returns its re-
sult. The span for the resulting token begins at the left border
of the match that calls continue,

skip identical to continue, but moves forward the left marker for
the position span of the returned token. Thus skip should be
used for skipping whitespace.

yysm the sourcemap for the lexer, to be used with the functions in
the AntlrSourcePos module.

yypos the position of the left border of the matched RE, starting from
0.

yylineno the current line number, starting from 1.
yycolno the current column number, starting from 1.

? any name bound in the %defs section.

2.4 Using the generated code

The generated lexer module has a signature including the following:

type prestrm
type strm = prestrm * start_state

val streamify : (unit -> string) -> strm
val streamifyReader : (char, ’a) StringCvt.reader -> ’a -> strm
val streamifyInstream : TextIO.instream -> strm

val lex : AntlrStreamPos.sourcemap -> strm ->
lex_result * AntlrStreamPos.span * strm

where lex result is the result type of the lexer actions, and start state is an algebraic
datatype with nullary constructors for each defined start state. Note that lex result
must be defined as a type using the %defs directive. In this interface, lexer start states

10 CHAPTER 2. ML-ULEX

are conceptually part of the input stream; thus, from an external viewpoint start states
can be ignored. However, it is sometimes helpful to control the lexer start state exter-
nally, allowing contextual information to influence the lexer. This is why the strm type
includes a concrete start state component.

Note that the AntlrStreamPos module is part of the ml-lpt-lib library described in
Chapter 4. An AntlrStreamPos.sourcemap value, combined with an AntlrStreamPos.pos
value, compactly represents position information (line number, column number, and so
on). An AntlrStreamPos.span is a pair of pos values.

2.5 ml-lex compatibility

Running ml-ulex with the --ml-lex-mode option will cause it to process its input file
using the ML-Lex format, and interpret the actions in a ML-Lex-compatible way. The
compatibility extends to the bugs in ML-Lex, so in particular yylineno starts at 2 in
--ml-lex-mode.

Chapter 3

ML-Antlr

Parsers analyze the syntactic structure of an input string, and are usually specified with
some variant of context-free grammars. ml-antlr is a parser generator for Standard
ML based on Terence Parr’s variant of LL(k) parsing. The details of the parsing algo-
rithm are given in the companion implementation notes; the practical restrictions on
grammars are discussed in Section 3.5. A parser generated by ml-antlr is a functor; it
requires a module with the ANTLR LEXER signature:

signature ANTLR_LEXER = sig
type strm
val getPos : strm -> AntlrStreamPos.pos

end

Applying the parser functor will yield a module containing a parse function:

val parse :
(Lex.strm -> ParserToks.token * AntlrStreamPos.span * Lex.strm) ->
Lex.strm ->
result_ty option * strm * ParserToks.token AntlrRepair.repair list

where result ty is determined by the semantic actions for the parser. The ParserTokens
module is generated by ml-antlr (see Section 3.7) and the AntlrRepair module is avail-
able in the ml-lpt library (see Chapter 4).

Notable features of ml-antlr include:

• Extended BNF format, including Kleene-closure (*), positive closure (+), and op-
tional (?) operators.

• Robust, automatic error repair.

• Selective backtracking.

• “Inherited attributes”: information can flow downward as well as upward during
a parse.

• Semantic predicates: a syntactic match can be qualified by a semantic condition.

11

12 CHAPTER 3. ML-ANTLR

• Grammar inheritence.

• Convenient default actions, especially for EBNF constructions.

• Convenient abbreviations for token names (e.g., "(" rather than LP)

The tool is invoked from the command-line as follows:

ml-antlr [options] file

where file is the name of the input ml-ulex specification, and where options may be
any combination of:

--dot generate DOT output (for graphviz; see
http://www.graphviz.org). The produced file will
be named file.dot, where file is the input file.

--latex generate a simple LATEXversion of the grammar, named
file.tex.

--unit-actions ignore the action code in the grammar, and instead return
() for every production.

The output file will be called file.sml.

3.1 Background definitions

Before describing ml-antlr, we need some terminology. A context-free grammar (CFG)
is a set of token (or terminal) symbols, a set of nonterminal symbols, a set of productions,
and a start symbol S, which must be a nonterminal. The general term symbol refers
to both tokens and nonterminals. A production relates a nonterminal A to a string of
symbols α; we write this relation as A → α. Suppose αAβ is a symbol string, and A is
a nonterminal symbol. We write αAβ ⇒ αγβ if A → γ is a production; this is called
a one-step derivation. In general, a CFG generates a language, which is a set of token
strings. The strings included in this language are exactly those token string derived in
one or more steps from the start symbol S.

A parser recognizes whether an input string is in the language generated by a given
CFG, usually computing some value (such as a parse tree) while doing so. The compu-
tations performed during a parse are called semantic actions (or just actions).

3.2 Specification format

A ml-antlr specification is a list of semicolon-terminated declarations. Each declara-
tion is either a directive or a nonterminal definition. Directives are used to alter global
specification properties (such as the name of the functor that will be generated) or to

3.2. SPECIFICATION FORMAT 13

spec ::= (declaration ;)∗

declaration ::= directive
| nonterminal

directive ::= %defs code
| %entry ID (, ID)∗

| %import STRING (%dropping symbol+)?

| %keywords symbol (, symbol)∗

| %name ID
| %refcell ID : monotype = code
| %start ID
| %tokens : tokdef (| tokdef)∗

| %nonterms : datacon (| datacon)∗

code ::= (. . .)
tokdef ::= datacon ((STRING))?

datacon ::= ID
| ID of monotype

monotype ::= standard SML syntax for monomorphic types
nonterminal ::= ID formals? : prodlist

formals ::= (ID (, ID)∗)
prodlist ::= production (| production)∗

production ::= %try? named-item∗ (%where code)? (=> code)?

named-item ::= (ID :)? item
item ::= prim-item ?

| prim-item +
| prim-item *

prim-item ::= symbol (@ code)?

| (prodlist)
symbol ::= ID

| STRING
ID ::= standard SML identifier

STRING ::= standard SML double-quoted string

Figure 3.1: The ml-antlr grammar

14 CHAPTER 3. ML-ANTLR

define supporting infrastructure for the grammar. The nonterminal definitions specify
the grammar itself. The grammar for ml-antlr is given in Figure 3.1.

SML-style comments ((* ... *)) are treated as ignored whitespace anywhere they
occur in the specification, except in segments of code. The code symbol represents a seg-
ment of SML code, enclosed in parentheses. Extra parentheses occuring within strings
or comments in code need not be balanced. A complete example specification appears
in Chapter 5.

Most ml-antlr declarations are cumulative: they may appear multiple times in a
grammar specification, with each new declaration adding to the effect of the previous
ones. Thus, for instance, the specification fragment

%tokens : foo ;
%tokens : bar of string ;

is equivalent to the single directive

%tokens : foo | bar of string ;

and similarly for nonterminal definitions and so on. All declarations are cumulative
except for the %start and %name directives. The reason for treating specifications in this
way is to give the %import directive very simple semantics, as described below.

3.3 Directives

3.3.1 The %defs directive

The %defs directive is used to include a segment of code in the generated parser:

%defs (
fun helperFn x = (* ... *)

);

All definitions given will be in scope for the semantic actions (see Section 3.4.5).

3.3.2 The %entry directive

It is often useful to parse input based on some fragment of a grammar. When a non-
terminal is declared to be an entry point for the grammar via %entry, ml-antlr will
generate a separate parse function that expects the input to be a string derived from
that nonterminal. Given a grammar with a nonterminal exp and the declaration

%entry exp;

the generated parser will include a function

val parseexp :
(Lex.strm -> ParserToks.token * AntlrStreamPos.span * Lex.strm) ->
Lex.strm ->
exp_ty option * strm * ParserToks.token AntlrRepair.repair list

3.3. DIRECTIVES 15

where exp ty is the type of the actions for the exp nonterminal. Note that if exp has
inherited attributes (Section 3.4.2) they will appear as a tuple argument, curried after
the lexer argument:

val parseexp :
(Lex.strm -> ParserToks.token * AntlrStreamPos.span * Lex.strm) ->
attributes ->
Lex.strm ->
exp_ty option * strm * ParserToks.token AntlrRepair.repair list

Finally, the start symbol (Section 3.3.7) is always an entry point to the grammar, but the
generated function is simply called parse.

3.3.3 The %import directive

The %import directive is used to include one grammar inside another. The string given
in the directive should hold the path to a grammar file, and \ characters must be es-
caped. By default, all declarations appearing in the specified file are included in the
resulting grammar, except for %start, %entry, and %name declarations. However, indi-
vidual tokens or nonterminals can be dropped by listing them in the %dropping clause of
an %import declaration. Since nonterminal definitions are cumulative (Section 3.4), the
imported nonterminals can be extended with new productions simply by listing them.
The final grammar must, of course, ensure that all used tokens and nonterminals are
defined.

3.3.4 The %keywords directive

When a syntax error is discovered, ml-antlr attempts to find a single-token repair to the
input that will allow the parse to continue. Changes to the input involving keywords
can drastically alter the meaning of the input, so it is usually desirable to favor non-
keyword repairs. The %keywords directive is used to tell ml-antlr which tokens should
be considered keywords.

3.3.5 The %name directive

The prefix to use for the name of the generated parser functor is specified using %name.
In addition to the functor, ml-antlr will generate a module to define the token datatype.
If the declaration

%name Example;

appears in the specification, then the parser functor will be named ExampleParseFn and
the tokens module will be called ExampleTokens.

16 CHAPTER 3. ML-ANTLR

3.3.6 The %refcell directive

Because semantic actions must be pure (for backtracking and error repair), they cannot
make use of standard reference cells to communicate information. Nonterminals may
inherit attributes (Section 3.4.2), which allows information to flow downward, but in
some cases flowing information this way can become extremely tedious. For example,
a data structure may only need to be updated at a single point in the grammar, but in
order to properly thread this state through the grammar, an inherited attribute would
have to be added and propagated through every nonterminal.

The %refcell directive is used to declare a backtracking-safe reference cell and make
it available to all semantic actions. Reference cells are declared by giving the name, type,
and initial value for the cell. Each cell is bound in the semantic actions as a standard SML
ref value. Thus, for example, we might have the following specification fragment:

%refcell symbols : StringSet.set = (StringSet.empty);

exp
: INT
| (exp)
| ID => (symbols := StringSet.add(!symbols, ID); ID)
;

The result of this fragment is that all symbol uses are tracked, in any use of the exp
nonterminal, but without having to manually thread the data structure state through
the grammar.

3.3.7 The %start directive

A particular nonterminal must be designated as the start symbol for the grammar. The
start symbol can be specified using %start; otherwise, the first nonterminal defined is
assumed to be the start symbol.

3.3.8 The %tokens directive

The alphabet of the parser is defined using %tokens. The syntax for this directive resem-
bles a datatype declaration in SML, except that optional abbreviations for tokens may
be defined. For example:

%tokens
: KW_let ("let") | KW_in ("in")
| ID of string | NUM of Int.int
| EQ ("=") | PLUS ("+")
| LP ("(") | RP (")")
;

Within nonterminal definitions, tokens may be referenced either by their name or abbre-
viation; the latter must always be double-quoted.

3.4. NONTERMINAL DEFINITIONS 17

3.4 Nonterminal definitions

The syntax of nontermal definitions is given in Figure 3.1. As an illustration of the
grammar, consider the following example, which defines a nonterminal with three pro-
ductions, taking a formal parameter env:

atomicExp(env)
: ID => (valOf(AtomMap.find (env, Atom.atom ID)))
| NUM
| "(" exp@(env) ")"
;

Note that actions are only allowed at the end of a production, and that they are optional.
As with most directives, the non-terminal definitions are cumulative. For example,

the definition of atomicExp above could also be written as three separate rules.

atomicExp(env) : ID => (valOf(AtomMap.find (env, Atom.atom ID)));
atomicExp(env) : NUM;
atomicExp(env) : "(" exp@(env) ")";

3.4.1 Extended BNF constructions

In standard BNF syntax, the right side of a production is a simple string of symbols.
Extended BNF allows regular expression-like operators to be used: *, +, and ? can
follow a symbol, denoting 0 or more, 1 or more, or 0 or 1 occurrences respectively. In
addition, parentheses can be used within a production to enclose a subrule, which may
list several |-separated alternatives, each of which may have its own action. In the
following example, the nonterminal item list matches a semicolon-terminated list of
identifiers and integers:

item_list : ((ID | INT) ";")* ;

All of the extended BNF constructions have implications for the actions of a production;
see Section 3.4.5 for details.

3.4.2 Inherited attributes

In most parsers, information can flow upward during the parse through actions, but not
downard. In attribute grammar terminology, the former refers to synthesized attributes,
while the latter refers to inherited attributes. Since ml-antlr is a predictive parser, it
allows both kinds of attributes. Inherited attributes are treated as parameters to nonter-
minals, which can be used in their actions or semantic predicates. Formal parameters
are introduced by enclosing them in parentheses after the name of a nonterminal and
before its production list; the list of parameters will become a tuple. In the following,
the nonterminal expr takes a single parameter called env:

expr(env) : (* ... *) ;

18 CHAPTER 3. ML-ANTLR

If a nonterminal has a formal parameter, any use of that nonterminal is required to apply
it to an actual parameter. Actual parameters are introduced in a production by giving
the name of a nonterminal, followed by the @ sign, followed by the code to compute the
parameter. For example:

assignment : ID ":=" expr@(Env.emptyEnv) ;

3.4.3 Selective backtracking

Sometimes it is inconvenient or impossible to construct a nonterminal definition which
can be unambiguously resolved with finite lookahead.The %try keyword can be used to
mark ambiguous productions for selective backtracking. For backtracking to take place,
each involved production must be so marked. Consider the following:

A : %try B* ";"
| %try B* "(" C+ ")"
;

As written, the two productions cannot be distinguished with finite lookahead, since
they share an arbitrary long prefix of B nonterminal symbols. Adding the %try markers
tells ml-antlr to attempt to parse the first alternative, and if that fails to try the sec-
ond. Another way to resolve the ambiguity is the use of subrules, which do not incur a
performance penalty:

A : B* (";"
| "(" C+ ")"
)

;

This is essentially left-factoring. See Section 3.5 for more guidance on working with the
LL(k) restriction.

3.4.4 Semantic predicates

A production can be qualified by a semantic predicate by introducting a %where clause.
Even if the production is syntactically matched by the input, it will not be used unless
its semantic predicate evaluates to true. A %where clause can thus introduce context-
sensitivity into a grammar. The following example uses an inherited env attribute, con-
taining a variable-value environment:

atomicExp(env)
: ID %where (AtomMap.inDomain(env, Atom.atom ID))

=> (valOf(AtomMap.find (env, Atom.atom ID)))
| NUM
| "(" exp@(env) ")"
;

3.4. NONTERMINAL DEFINITIONS 19

In this example, if a variable is mentioned that has not been defined, the error is detected
and reported during the parse as a syntax error.

Semantic predicates are most powerful when combined with selective backtracking.
The combination allows two syntactically identical phrases to be distinguished by con-
textual, semantic information.

3.4.5 Actions

Actions for productions are just SML code enclosed in parentheses. Because of potential
backtracking and error repair, action code should be pure (except that they may update
ml-antlr refcells; see the %refcell directive).

In scope for an action are all the user definitions from the %defs directive. In addi-
tion, the formal parameters of the production are in scope, as are the semantic yield of
all symbols to the left of the action (the yield of a token is the data associated with that
token’s constructor). In the following example, the first action has env and exp in scope,
while the second action has env and NUM in scope:

atomicExp(env)
: "(" exp@(env) ")" => (exp)
| NUM => (NUM)
;

Notice also that the actual parameter to exp in the first production is env, which is in
scope at the point the parameter is given; exp itself would not be in scope at that point.

An important aspect of actions is naming: in the above example, exp and NUM were
the default names given to the symbols in the production. In general, the default name
of a symbol is just the symbol’s name. If the same name appears multiple times in a
production, a number is appended to the name of each yield, start from 1, going from
left to right. A subrule (any items enclosed in parentheses) is by default called SR. Any
default name may be overriden using the syntax name=symbol. Overriding a default
name does not change the automatic number for other default names. Consider:

foo : A bar=A A ("," A)* A*
;

In this production, the names in scope from left to right are: A1, bar, A3, SR, A4.
The EBNF operators *, + and ? have a special effect on the semantic yield of the

symbols to which they are applied. Both * and + yield a list of the type of their symbol,
while ? yields an option. For example, if ID* appeared in a production, its default name
would be ID, and if the type of value of ID was string, it would yield a string list;
likewise ID? would yield a string option.

Subrules can have embedded actions that determine their yield:

plusList : ((exp "+" exp => (exp1 + exp2)) ";" => (SR))* => (SR)

The plusList nonterminal matches a list of semicolon-terminated additions. The inner-
most subrule, containing the addition, yields the value of the addition; that subrule is

20 CHAPTER 3. ML-ANTLR

contained in a larger subrule terminated by a semicolon, which yield the value of the in-
ner subrule. Finally, the semicolon-terminated subrule is itself within a subrule, which
is repeated zero or more times. Note that the numbering scheme for names is restarted
within each subrule.

Actions are optional: if an action is not specified, the default behavior is to return all
nonterminals and non-nullary tokens in scope. Thus, the last example can be written as

plusList : ((exp "+" exp => (exp1 + exp2)) ";")*

since "+" and ";" represent nullary token values.

3.5 The LL(k) restriction

When working with any parser, one must be aware of the restrictions is algorithm places
on grammars. When ml-antlr analyzes a grammar, it attempts to create a prediction-
decision tree for each nonterminal. In the usual case, this decision is made using looka-
head token sets. The tool will start with k = 1 lookahead and increment up to a set
maximum until it can uniquely predict each production. Subtrees of the decision tree
remember the tokens chosen by their parents, and take this into account when comput-
ing lookahead. For example, suppose we have two productions at the top level that
generate the following sentences:

prod1 ==> AA
prod1 ==> AB
prod1 ==> BC
prod2 ==> AC
prod2 ==> C

At k = 1, the productions can generate the following sets:

prod1 {A, B}
prod2 {A, C}

and k = 2,

prod1 {A, B, C}
prod2 {C, <EOF>}

Examining the lookahead sets alone, this grammar fragment looks ambiguous even for
k = 2. However, ml-antlr will generate the following decision tree:

if LA(0) = A then
if LA(1) = A or LA(1) = B then

predict prod1
else if LA(1) = C then

predict prod2
else if LA(0) = B then

3.5. THE LL(K) RESTRICTION 21

predict prod1
else if LA(1) = C then
predict prod2

In ml-antlr, only a small amount of lookahead is used by default (k = 3). Thus, the
following grammar is ambiguous for ml-antlr:

foo : A A A B
| A A A A
;

and will generate the following error message:

Error: lookahead computation failed for ’foo’,
with a conflict for the following productions:
foo ::= A A A A EOF
foo ::= A A A B EOF

The conflicting token sets are:
k = 1: {A}
k = 2: {A}
k = 3: {A}

Whenever a lookahead ambiguity is detected, an error message of this form is given. The
listed productions are the point of conflict. The k = ... sets together give examples that
can cause the ambiguity, in this case an input of AAA.

The problem with this example is that the two foo productions can only be dis-
tinguished by a token at k = 4 depth. This situation can usually be resolved using
left-factoring, which lifts the common prefix of multiple productions into a single pro-
duction, and then distinguishes the old productions through a subrule:

foo : A A A (B | A)
;

Recall that subrule alternatives can have their own actions:

foo : A A A (B => ("got a B")
| A => ("got an A")
)

;

making left-factoring a fairly versatile technique.
Another limitation of predictive parsing is left-recursion, where a nonterminal recurs

without any intermediate symbols:

foo : foo A A
| B
;

22 CHAPTER 3. ML-ANTLR

Left-recursion breaks predictive parsing, because it is impossible to make a prediction
for a left-recursive production without already having a prediction in hand. Usually, this
is quite easily resolved using EBNF operators, since left-recursion is most often used for
specifying lists. Thus, the previous example can be rewritten as

foo : B (A A)*
;

which is both more readable and more amenable to LL(k) parsing.

3.6 Position tracking

ml-antlr includes built-in support for propagating position information. Because the
lexer module is required to provide a getPos function, the tokens themselves do not
need to carry explicit position information. A position span is a pair to two lexer po-
sitions (the type AntlrStreamPos.span is an abbreviation for AntlrStreamPos.pos *
AntlrStreamPos.pos). Within action code, the position span of any symbol (token, non-
terminal, subrule) is available as a value; if the yield of the symbol is named Sym, its span
is called Sym SPAN. Note that the span of a symbol after applying the * or + operators is
the span of the entire matched list:

foo : A* => (* A_SPAN starts at the first A and ends at the last *)

In addition, the span of the entire current production is available as FULL SPAN.

3.7 Using the generated code

When ml-antlr is run, it generates a tokens module and a parser functor. If the parser
is given the name Xyz via the %name directive, these structures will be called XyzParseFn
and XyzTokens respectively. The tokens module will contain a single datatype, called
token. The data constructors for the token type have the same name and type as those
given in the %tokens directive; in addition, a nullary constructor called EOF will be avail-
able.

The generated parser functor includes the following:

val parse :
(Lex.strm -> ParserToks.token * AntlrStreamPos.span * Lex.strm) ->
Lex.strm ->
result_ty option * strm * ParserToks.token AntlrRepair.repair list

where result ty is the type of the semantic action for the grammar’s start symbol. The
parse function is given a lexer function and a stream. The result of a parse is the seman-
tic yield of the parse, the value of the stream at the end of the parse, and a list of error
repairs. If an unrepairable error occurred, NONE is returned for the yield of the parse.

Note that if the start symbol for the grammar includes an inherited attribute (or
a tuple of attributes), it will appear as an additional, curried parameter to the parser

3.7. USING THE GENERATED CODE 23

following the lexer parameter. Suppose, for example, that a grammar has a start symbol
with an inherited Int.int AtomMap.map, and that the grammar yields Int.int values.
The type of its parse function is as follows:

val parse :
(strm -> ParserToks.token * strm) ->
Int.int AtomMap.map ->
strm ->
Int.int option * strm * ParserToks.token AntlrRepair.repair list

The AntlrRepair module is part of the ml-lpt-lib library; it is fully described in
Chapter 4. It includes a function repairToString:

val repairToString :
(’token -> string) -> AntlrStreamPos.sourcemap ->
’token repair -> string

Likewise, the tokens module (ParserTokens in this example) includes a function:

val toString : token -> string

Thus, although error reporting is customizable, a reasonable default is provided, as il-
lustrated below:

let
val sm = AntlrStreamPos.mkSourcemap()
val (result, strm’, errs) = Parser.parse (Lexer.lex sm) strm
val errStrings =

map (AntlrRepair.repairToString ParserTokens.toString sm)
errs

in
print (String.concatWith "\n" errStrings)

end

The toString function will convert each token to its symbol as given in a %tokens direc-
tive, using abbreviations when they are available. By substituting a different function
for toString, this behavior can be altered.

24 CHAPTER 3. ML-ANTLR

Chapter 4

The ml-lpt-lib library

4.1 The AntlrStreamPos structure

structure AntlrStreamPos : sig

type pos = Position.int
type span = pos * pos
type sourceloc = { fileName : string option, lineNo : int, colNo : int }
type sourcemap

(* the result of moving forward an integer number of characters *)
val forward : pos * int -> pos

val mkSourcemap : unit -> sourcemap
val mkSourcemap’ : string -> sourcemap

val same : sourcemap * sourcemap -> bool

(* log a new line occurence *)
val markNewLine : sourcemap -> pos -> unit
(* resychronize to a full source location *)
val resynch : sourcemap -> pos * sourceloc -> unit

val sourceLoc : sourcemap -> pos -> sourceloc
val fileName : sourcemap -> pos -> string option
val lineNo : sourcemap -> pos -> int
val colNo : sourcemap -> pos -> int
val toString : sourcemap -> pos -> string
val spanToString : sourcemap -> span -> string

end

25

26 CHAPTER 4. THE ML-LPT-LIB LIBRARY

4.2 The AntlrRepair structure

structure AntlrRepair : sig

datatype ’token repair_action
= Insert of ’token list
| Delete of ’token list
| Subst of {

old : ’token list,
new : ’token list

}
| FailureAt of ’token

type ’a repair = AntlrStreamPos.pos * ’token repair_action

val repairToString :
(’token -> string) ->
AntlrStreamPos.sourcemap ->
’token repair -> string

end

Chapter 5

A complete example

This chapter gives a complete example of a simple calculator language implemented
using both ml-ulex and ml-antlr. Figure 5.1 gives the CM file for the project.

Library

structure CalcLex
functor CalcParse
structure CalcTest

is
$/basis.cm
$/smlnj-lib.cm
$/ml-lpt-lib.cm

calc.grm : ml-antlr
calc.lex : ml-ulex
calc-test.sml

Figure 5.1: The CM file: sources.cm

27

28 CHAPTER 5. A COMPLETE EXAMPLE

%name CalcLexer;

%let digit = [0-9];
%let int = {digit}+;
%let alpha = [a-zA-Z];
%let id = {alpha}({alpha} | {digit})*;

%defs (
open CalcTokens
type lex_result = token
fun eof() = EOF

);

let => (T.KW_let);
in => (T.KW_in);
{id} => (T.ID yytext);
{int} => (T.NUM (valOf (Int.fromString yytext)));
"=" => (T.EQ);
"+" => (T.PLUS);
"-" => (T.MINUS);
"*" => (T.TIMES);
"(" => (T.LP);
")" => (T.RP);
" " | \n | \t

=> (continue());
. => ((* handle error *));

Figure 5.2: The ml-ulex specification: calc.lex

29

%name Calc;

%tokens
: KW_let ("let") | KW_in ("in")
| ID of string | NUM of Int.int
| EQ ("=") | PLUS ("+")
| TIMES ("*") | MINUS ("-")
| LP ("(") | RP (")")
;

exp(env)
: "let" ID "=" exp@(env)
"in" exp@(AtomMap.insert(env, Atom.atom ID, exp1))
=> (exp2)

| addExp@(env)
;

addExp(env)
: multExp@(env) ("+" multExp@(env))*

=> (List.foldr op+ 0 multExp::SR)
;

multExp(env)
: prefixExp@(env) ("*" prefixExp@(env))*

=> (List.foldr op* 1 prefixExp::SR)
;

prefixExp(env)
: atomicExp@(env)
| "-" prefixExp@(env)

=> (~prefixExp)
;

atomicExp(env)
: ID

=> (valOf(AtomMap.find (env, Atom.atom ID)))
| NUM
| "(" exp@(env) ")"
;

Figure 5.3: The ml-antlr specification: calc.grm

30 CHAPTER 5. A COMPLETE EXAMPLE

structure CalcTest =
struct

structure CP = CalcParseFn(CalcLexer)

(* val calc : TextIO.instream -> Int.int *)
fun calc instrm = let
val sm = AntlrStreamPos.mkSourcemap()
val lex = CalcLexer.lex sm
val strm = CalcLexer.streamifyInstream instrm
val (r, strm’, errs) = CP.parse lex AtomMap.empty strm

in
print (String.concatWith "\n"

(map (AntlrRepair.repairToString
CalcTokens.toString sm)

errs));
r

end

end

Figure 5.4: The driver: calc-test.sml

