A
Argonne

NATIONAL
LABORATORY

Pattern: Command

... for a brighter future

Presented by: Rick Bradshaw

Jepa

; 3 of E.nerg

Behavioral Patterns Command Pattern: Intent

B Concerned with algorithms and the B Encapsulate a request as an

assignment of responsibility object, thereby letting you
between objects. They describe not parameterize clients with different
only the objects or classes but also requests, queue, or log requests,
the pattern of communication and support un-doable operations.

between them

B Characterize complex control flow
that is difficult to follow at run-time.

Command Pattern: Motivation/Applications

B Motivation:
— Used when it is necessary to issue requests to objects without knowing

anything about the operation being requested or the receiver of the
request.

B Applications:

Object oriented replacement for “Call-back” functions
specify,queue, and execute requests at different times
Support “undo”

Log changes to be replayed upon system crash
Implement “transactional” systems

Command Pattern: Structure

i Command
Client Invoker e ™,
Execute()

[
[
I -
1 ————| Receiver
: Action() { receiver| ConcreteClass
1 state
__________________ > Executel) O | Feceiver-},ﬁ,ctign”b]

B Command: declares an interface for executing a operation
B ConcreteClass:
— Defines a binding between a Receiver and an Action()
— Implements Execute by invoking the Action() from Receiver
B Client: creates a ConcreteCommand and sets the Receiver
B Invoker: asks the command to carry out the request
B Receiver: knows how to perform an Action()
— Any class can act as a Receiver

Command Pattern: Consequences

Decouples invoker from the object that performs the operation

Can assemble multiple Commands into composite commands, like Macros/
Transactions

Easily change Commands without changing existing classes.

If you are going to support “undo” you will need to possibly store extra state
information in the ConcreteCommand object to ensure no loss or alteration
of behavior

Command Pattern: Sample Code

olass Command/
pulblic:
wirtual woilid execute (woid) =0;
wirtual ~Commandi{woid){l;

s

2lass Task : pubklic Command |
pulblic:
Taski{string dav, string task) {
_task = task;
“day = day;
1
wold execute (wodid) |
cout << _day =< "t <« task << andl;
1

private:
string _task;
string dav;
I

olass TaskList|
pulblic:
wold add{Command *Fo) |
commands. push _back (o) ;
1

wvold printTasks {(woid) |
for{vector<Command®*>: :sice tvpe =z=0;=xz<commands.size{);xz++){
commands [zx] —Fexecute () ;
i

wold undo (woid) |
if{ocommands. size() = 0O) |
commands. pop_kack({);

aelzse |
cout =< "dan't undo! << endl;
i
1

private:
wactorsCommand®*> commands;
1;

Argonne

NATIONAL LABORATORY

Command Pattern: Sample Code — Main

int main{woid) /|
TasklList todos;

S iClreate each task

Task first({'"Monday'", "0QOO class");

Task second({"Tuesdavy", "Car appointment");
Task third{"Wednesdavy", "VHD meeting");
Task fourth({"Fridavy", "leawve earlv");

S ihdd tasks to TaskList

cout << endl << "TODD Liszt:" << endl:
todos.add{&first) ;
todos.add{&second) ;
todos.add{&third) ;

todos. printTasks();

A f/8how an undo cperation

todos. undo () ;

cout << endl << "TODD List:" << endl:
todos. add (& fourth) ;

todos. printTasks();

return O;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

