
Pattern: Command

Presented by: Rick Bradshaw

2

Behavioral Patterns Command Pattern: Intent

 Concerned with algorithms and the
assignment of responsibility
between objects. They describe not
only the objects or classes but also
the pattern of communication
between them

 Characterize complex control flow
that is difficult to follow at run-time.

 Encapsulate a request as an
object, thereby letting you
parameterize clients with different
requests, queue, or log requests,
and support un-doable operations.

Command Pattern: Motivation/Applications

 Motivation:
– Used when it is necessary to issue requests to objects without knowing

anything about the operation being requested or the receiver of the
request.

 Applications:
– Object oriented replacement for “Call-back” functions
– specify,queue, and execute requests at different times
– Support “undo”
– Log changes to be replayed upon system crash
– Implement “transactional” systems

Command Pattern: Structure

 Command: declares an interface for executing a operation
 ConcreteClass:

– Defines a binding between a Receiver and an Action()
– Implements Execute by invoking the Action() from Receiver

 Client: creates a ConcreteCommand and sets the Receiver
 Invoker: asks the command to carry out the request
 Receiver: knows how to perform an Action()

– Any class can act as a Receiver

Command Pattern: Consequences

 Decouples invoker from the object that performs the operation
 Can assemble multiple Commands into composite commands, like Macros/

Transactions
 Easily change Commands without changing existing classes.
 If you are going to support “undo” you will need to possibly store extra state

information in the ConcreteCommand object to ensure no loss or alteration
of behavior

Command Pattern: Sample Code

Command Pattern: Sample Code – Main

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

