
Pattern: Command

Presented by: Rick Bradshaw

2

Behavioral Patterns Command Pattern: Intent

 Concerned with algorithms and the
assignment of responsibility
between objects. They describe not
only the objects or classes but also
the pattern of communication
between them

 Characterize complex control flow
that is difficult to follow at run-time.

 Encapsulate a request as an
object, thereby letting you
parameterize clients with different
requests, queue, or log requests,
and support un-doable operations.

Command Pattern: Motivation/Applications

 Motivation:
– Used when it is necessary to issue requests to objects without knowing

anything about the operation being requested or the receiver of the
request.

 Applications:
– Object oriented replacement for “Call-back” functions
– specify,queue, and execute requests at different times
– Support “undo”
– Log changes to be replayed upon system crash
– Implement “transactional” systems

Command Pattern: Structure

 Command: declares an interface for executing a operation
 ConcreteClass:

– Defines a binding between a Receiver and an Action()
– Implements Execute by invoking the Action() from Receiver

 Client: creates a ConcreteCommand and sets the Receiver
 Invoker: asks the command to carry out the request
 Receiver: knows how to perform an Action()

– Any class can act as a Receiver

Command Pattern: Consequences

 Decouples invoker from the object that performs the operation
 Can assemble multiple Commands into composite commands, like Macros/

Transactions
 Easily change Commands without changing existing classes.
 If you are going to support “undo” you will need to possibly store extra state

information in the ConcreteCommand object to ensure no loss or alteration
of behavior

Command Pattern: Sample Code

Command Pattern: Sample Code – Main

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

