
Lecture 3

Introduction to Unix Systems
Programming:

Unix File I/O System Calls

1Thursday, October 7, 2010

Unix File I/O

2Thursday, October 7, 2010

Unix System Calls

• System calls are low level functions the operating
system makes available to applications via a
defined API (Application Programming Interface)

• System calls represent the interface the kernel
presents to user applications

3Thursday, October 7, 2010

A File is a File is a File
--Gertrude Stein

• Remember, “Everything in Unix is a File”
• This means that all low-level I/O is done by

reading and writing file handles, regardless of
what particular peripheral device is being
accessed—a tape, a socket, even your terminal,
they are all files.

• Low level I/O is performed by making system
calls

4Thursday, October 7, 2010

User and Kernel Space
• System memory is divided into two parts:

– user space
• a process executing in user space is executing in user

mode
• each user process is protected (isolated) from another

(except for shared memory segments and mmapings
in IPC)

– kernel space
• a process executing in kernel space is executing in

kernel mode
• Kernel space is the area wherein the kernel executes
• User space is the area where a user program normally

executes, except when it performs a system call.

5Thursday, October 7, 2010

Anatomy of a System Call
• A System Call is an explicit request to the kernel made via a

software interrupt
• The standard C Library (libc) provides wrapper routines,

which basically provide a user space API for all system
calls, thus facilitating the context switch from user to kernel
mode

• The wrapper routine (in Linux) makes an interrupt call
0x80 (vector 128 in the Interrupt Descriptor Table)

• The wrapper routine makes a call to a system call handler
(sometimes called the “call gate”), which executes in kernel
mode

• The system call handler in turns calls the system call
interrupt service routine (ISR), which also executes in
kernel mode.

6Thursday, October 7, 2010

Regardless…
• Regardless of the type of file you are reading or

writing, the general strategy remains the same:
– creat() a file
– open() a file
– read() a file
– write() a file
– close() a file

• These functions constitute Unix Unbuffered I/O
• ALL files are referenced by an integer file

descriptor (0 == STDIN, 1 == STDOUT, 2 ==
STDERR)

7Thursday, October 7, 2010

read() and write()

• Low level system calls return a count of the
number of bytes processed (read or written)

• This count may be less than the amount requested
• A value of 0 indicates EOF
• A value of –1 indicates ERROR
• The BUFSIZ #define (8192, 512)

8Thursday, October 7, 2010

A Poor Man’s cat
(~mark/pub/51081/io/simple.cat.c)

#include <unistd.h>
#include <stdio.h>
int main(int argc, char * argv [])
{
 char buf[BUFSIZ];
 int numread;
 while((numread = read(0, buf, sizeof(buf))) > 0)
 write(1, buf, numread);
 exit(0);
}

• Question: Why didn’t we have to open file handles
0 and 1?

9Thursday, October 7, 2010

read()

 #include <unistd.h>

 ssize_t read(int fd, void * buf, size_t count);

• If read() is successful, it returns the number of
bytes read

• If it returns 0, it indicates EOF
• If unsuccessful, it returns –1 and sets errno

10Thursday, October 7, 2010

write()

 #include <unistd.h>

 ssize_t write(int fd, void * buf, size_t
count);

• If write() is successful, it returns the number of
bytes written to the file descriptor, this will
usually equal count

• If it returns 0, it indicates 0 bytes were written
• If unsuccessful, it returns –1 and sets errno

11Thursday, October 7, 2010

open()

#include <fcntl.h>
int open(const char * path, int flags[, mode_t

mode]);

• flags may be OR’d together:
– O_RDONLY open for reading only
– O_WRONLY open for writing only
– O_RDRW open for both reading and writing
– O_APPEND open for appending to the end of file
– O_TRUNC truncate to 0 length if file exists
– O_CREAT create the file if it doesn’t exist

• path is the pathname of the file to open/create
• file descriptor is returned on success, -1 on error

12Thursday, October 7, 2010

creat()

• Dennis Ritchie was once asked what was the
single biggest thing he regretted about the C
language. He said “leaving off the ‘e’ on creat()”.

• The creat() system call creates a file with certain
permissions:

 int creat(const char * filename, mode_t mode);

• The mode lets you specifiy the permissions
assigned to the file after creation

• The file is opened for writing only

13Thursday, October 7, 2010

open() (create file)

• When we use the O_CREAT flag with open(), we need to
define the mode (rights mask from sys/stat.h):
– S_IRUSR read permission granted to OWNER
– S_IWUSR write permission granted to OWNER
– S_IXUSR execute permission granted to OWNER
– S_IRGRP read permission granted to GROUP

• etc.
– S_IROTH read permission granted to OTHERS

• etc.
• Example:
 int fd = open(“/path/to/file”, O_CREAT, S_IRUSR |

S_IWUSR | S_IXUSR | S_IRGRP | S_IROTH);

14Thursday, October 7, 2010

close()

 #include <unistd.h>
 int close(int fd);
• close() closes a file descriptor (fd) that has

been opened.
• Example: ~mark/pub/51081/io/mycat.c

15Thursday, October 7, 2010

lseek()
(~mark/pub/50181/lseek/myseek.c)

#include <sys/types.h>
#include <unistd.h>
long lseek(int fd, long offset, int startingpoint)
• lseek moves the current file pointer of the file associated

with file descriptor fd to a new position for the next read/
write call

• offset is given in number of bytes, either positive or
negative from startingpoint

• startingpoint may be one of:
– SEEK_SET move from beginning of the file
– SEEK_CUR move from current position
– SEEK_END move from the end of the file

16Thursday, October 7, 2010

Error Handling
(~mark/pub/51081/io/myfailedcat.c)

• System calls set a global integer called errno on error:
– extern int errno; /* defined in /usr/include/errno.h */

• The constants that errno may be set to are defined in </usr/
include/asm/errno.h>. For example:
– EPERM operation not permitted
– ENOENT no such file or directory (not there)
– EIO I/O error
– EEXIST file already exists
– ENODEV no such device exists
– EINVAL invalid argument passed

 #include <stdio.h>
 void perror(const char * s);

17Thursday, October 7, 2010

stat():
int stat(const char * pathname; struct stat *buf);

• The stat() system call returns a structure (into a buffer you
pass in) representing all the stat values for a given
filename. This information includes:
– the file’s mode (permissions)
– inode number
– number of hard links
– user id of owner of file
– group id of owner of file
– file size
– last access, modification, change times
– less /usr/include/sys/stat.h => /usr/include/bits/stat.h
– less /usr/include/sys/types.h (S_IFMT, S_IFCHR, etc.)

• Example: ~/UofC/51081/pub/51081/stat/mystat.c

18Thursday, October 7, 2010

make

19Thursday, October 7, 2010

What is make?

• make is used to:
– save time by not recompiling files that

haven't changed
– make sure all files that have changed do

get recompiled

20Thursday, October 7, 2010

The Concept
• make is a program that will update targets on the

basis of changes in dependencies.
• Although it is mostly used to build software by

compiling and linking, it can be used to manage
any construction project that involves creating
something based on something else (e.g., using
nroff over a series of book chapters).

• A makefile is nothing more than dependencies and
rules. A rule describes HOW to create the target
from the dependencies.

21Thursday, October 7, 2010

Calling Convention and Options

• -n don't make, but print out what would be
done

• -k keep going, don't stop on errors, which is
the default

• -f run makefile specified by filename
• Default makefile naming convention

– makefile
– Makefile

22Thursday, October 7, 2010

Dependencies and Rules

• Dependencies and Syntax
– target: dep1 dep2 depn
– make will build the first target it finds
– this target is commonly called "all"

• all: bigapp
• Rules

– It is a rule that every rule must begin with a single TAB
character!

• [TAB] gcc -c 1.c
• make has several built-in rules

– make -p will show them to you
• Examples (~mark/pub/51081/makefile.demo): simple,

make1

23Thursday, October 7, 2010

Macros and Multiple Targets
• a MACRO is a substitutable syntax to give flexibility and

genericity to rules
• Forms:

– MACRONAME=value
– access with either:

• $(MACRONAME) or
• ${MACRONAME} or (sometimes)

$MACRONAME
– undefine a MACRO with:

• MACRONAME=
• A macro can be redefined at the command line:

– make CC=aCC #for HP Ansi compiler
• Examples: (make2, make3)

24Thursday, October 7, 2010

Suffix Rules
• a Suffix Rule is a directive that applies rules and macros to generic

suffixes
• tell make about a new suffix: SUFFIXES: .cpp
• tell make how to compile it: .cpp.o:
• then the rule: $(CC) -xc++ $(CFLAGS) -I$(INCLUDE) -c $<
• Built in suffix macros:

– $@ The full name of the current target
– $? A list of modified dependencies (a list of files newer than the

target on which the target depends)
– $< The single file that is newer than the target on which the target is

dependent
– $* The name of the target file, WITHOUT its suffix (i.e., without

the .c or .cpp, etc.)
• examples (make5)

25Thursday, October 7, 2010

Debugging with gdb and ddd

26Thursday, October 7, 2010

What is a bug?

• a bug exists when executable code returns or
causes results that are unintended or undesirable.
– You can only have a bug in code that's

compiled or a shell script that's executed by the
shell (ie. the compiler or shell do not give
errors about compilation).

• Don't confuse design errors with code bugs (don't
confuse design with implementation)

27Thursday, October 7, 2010

Finding bugs
• Problem statement: Code runs fast and furious--we must

find out "where" in the code the problem originates.
• Solution statement:

– attempt to make bug repeatable--this is empirical
analysis, pure and simple.

– printf's can help, displaying variables, but they're
limited.

• gcc -o cinfo -DDEBUG cinfo.c
• cinfo

– __DATE__, __TIME__, __LINE__
• Examples: (in ~mark/pub/51081/debug) cinfo.c

28Thursday, October 7, 2010

Interactive Debuggers
• But interactive debuggers are MUCH better, because they

offer:
– run time code stepping
– variable analysis and modification
– breakpoints (multiple forms)

• Compile for debugging: -g
– Try to void optimizing when debugging

• remaining problems:
– loop tracing (problem doesn't arise until loop has

executed 1M times)
– Optimization problems
– Intermittency

• Examples: debug3 (gdb); debug4 (ddd)

29Thursday, October 7, 2010

